Due to extensive pollution and the relatively weak flow replacement in urban rivers, determining how to fully utilize the self-purification abilities of water bodies for water quality protection has been a complex and popular topic of research and social concern. Organic pollution is an important type of urban river pollution, and COD (chemical oxygen demand) is one of the key pollution factors. Currently, there is a lack of research on the relationship between COD degradation and the flow characteristics of urban rivers. In this paper, COD degradation experiments were conducted in an annular flume with Jinjiang River water at controlled flow velocities and the COD degradation coefficients under different hydraulic conditions were analyzed. A good correlation was observed between the degradation coefficient and hydraulic conditions. According to dimensional analysis, the relationship between the COD degradation coefficient and hydraulic conditions such as the flow velocity, water depth, Reynolds number (), and Froude number () was established as K COD = 86400 u h F r 0.8415 R e - 1.2719 + 0.258 . The COD degradation coefficients of the Chishui River in Guizhou Province ranged from 0.175-0.373 1/d based on this formula, and the field-measured values varied from 0.234-0.463 1/d. The error in the formula ranged from 5.4-25.3%. This study provides a scientific basis for the prediction of the COD degradation coefficients of urban rivers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765830 | PMC |
http://dx.doi.org/10.3390/ijerph16183447 | DOI Listing |
Genes (Basel)
December 2024
The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland.
Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.
Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.
View Article and Find Full Text PDFBiodegradation
January 2025
Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
The pollutants after were discharged into the water can gradually degrade through the self-purification. The oxygen consumption and pollutant degradation rates characterize the self-purification of small and medium-sized streams, while the dynamics of the two characteristics for large rivers has not been reported yet. The in-situ investigation for 297 sites in the 1700 km stream of the Yangtze River was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!