Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While paint coatings act as important barriers to corrosion, defects can lead to localized, rapid metal loss. The addition of corrosion inhibitors that are capable of leaching from a coating to protect the metal surface at a defect can prevent this type of corrosion. This work investigates the release and corrosion protection capabilities of two rare earth (RE) carboxylate inhibitors from an epoxy coating as an initial step to understanding their leaching behavior and interaction with the coating system. Leaching experiments were performed via inductively coupled plasma mass spectroscopy (ICP-MS) analyses of the solutions in which free-standing coatings loaded with varying concentrations of inhibitor compounds had been immersed. Inhibitor release from the epoxy coating was observed to be dependent on initial inhibitor concentration, inhibitor chemistry, and solution pH conditions. The coating systems with greater initial inhibitor loadings showed higher leaching rates, particularly in acidic environments. Following immersion, the absence of characteristic inhibitor peaks in the FTIR spectra of the coatings also confirmed leaching had taken place. Cross-sectional views of the coatings after exposure to the pH 1 environment presented a chloride infusion zone at the coating/solution interface where the inhibitor had leached out. The RE active inhibition provided by the leached RE carboxylate inhibitors was verified by exposure of a coating defect to a chloride contaminated environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b13722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!