AI Article Synopsis

  • Solid lipid nanoparticles (SLNs) are promising drug delivery vehicles due to their customizable lipid and surfactant combinations, which influence their ability to store and release drugs.
  • Significant research has focused on their physicochemical properties, but there hasn't been much exploration at the molecular level regarding SLN formation and their polymorphic transitions that can affect drug release.
  • This study combines small angle neutron scattering and molecular dynamics simulations to detail the internal structure of SLNs made from tripalmitin and Brij O10 surfactant, revealing how surfactants help stabilize the lipid core and explaining the differences in morphology between solid and liquid lipid aggregates.

Article Abstract

Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and all-atom molecular dynamics simulations is therefore used to yield a detailed atomistic description of the internal structure of an SLN comprising triglyceride, tripalmitin, and the nonionic surfactant, Brij O10 (C E ). The molecular scale mechanisms by which the surfactants stabilize the crystalline structure of the SLN lipid core are uncovered. By comparing these results to simulated liquid and solid aggregates of tripalmitin lipids, how the morphology of the lipids vary between these systems is demonstrated providing further insight into the mechanisms that control drug encapsulation and release from SLNs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201903156DOI Listing

Publication Analysis

Top Keywords

solid lipid
8
lipid nanoparticles
8
lipid core
8
polymorphic transitions
8
molecular scale
8
structure sln
8
slns
5
structure solid
4
lipid
4
nanoparticles solid
4

Similar Publications

Unlabelled: 20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.

View Article and Find Full Text PDF

Misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy.

View Article and Find Full Text PDF

Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.

View Article and Find Full Text PDF

Introduction: The quality of fruits has long been a key focus for breeders, and the development of scientifically sound and reasonable methods for evaluating fruit quality is of great significance in selecting superior cultivars. The mulberry tree, as a plant resource that serves both medicinal and dietary purposes, contains rich nutritional components and various bioactive compounds. These include properties such as immune enhancement, lipid-lowering effects, and anti-tumor activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!