Influence of Glutathione on Yeast Fermentation Efficiency under Copper Stress.

J Agric Food Chem

Institute of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn, Endenicher Allee 19b , D-53115 Bonn , Germany.

Published: October 2019

Copper in grape musts can influence the fermentation efficiency of during winemaking. The present study revealed the impact of glutathione addition on yeast strains with variable copper sensitivity. The antioxidant glutathione increased yeast vitality and fastened sugar metabolism at copper concentrations up to 0.39 mM. A significant accumulation of acetaldehyde at high copper concentrations was mitigated by the addition of 20 mg L glutathione. Low recovery of glutathione added implicated a complexation of both compounds. Specific alcohol dehydrogenase (ADH) activity was inhibited or reduced in the enzyme extracts of the copper-stressed yeast cells. The activity was restored in fermentations with glutathione at a copper concentration of 0.16 mM. At low copper concentrations, glutathione decreased ADH activity presumably due to complexation of essential copper amounts. Results provide important information on the use of glutathione as an antioxidant in winemaking to counteract negative effects of copper-rich musts on copper-sensitive yeast strains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b03519DOI Listing

Publication Analysis

Top Keywords

copper concentrations
12
fermentation efficiency
8
copper
8
yeast strains
8
adh activity
8
glutathione
7
yeast
5
influence glutathione
4
glutathione yeast
4
yeast fermentation
4

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.

View Article and Find Full Text PDF

Current study investigates the medicinal applications of (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract.

View Article and Find Full Text PDF

Liposomal Formulation of Hydroxychloroquine Can Inhibit Autophagy In Vivo.

Pharmaceutics

December 2024

Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.

Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!