Na metal is a promising anode for Na batteries owing to its high theoretical capacity and low reduction potential. Nevertheless, an unstable and inhomogeneous solid electrolyte interphase originated from the instantaneous reactions between the Na metal anode and organic liquid electrolyte causes the intractable hurdles of dendrite growth and low Coulombic efficiency. Here, a sodium fluoride (NaF)-poly(vinylidene difluoride) (PVDF) inorganic-organic hybrid protective layer is constructed on a commercial Cu current collector via a simple blade-coating technique. A flexible PVDF matrix can endure volume change, maintaining the integrity of the anode/coating interface, while NaF particles provide improved Na diffusion conductivity and mechanical strength, suppressing the dendrite initiation and growth. Based on these synergetic effects, an excellent cycle life of more than ∼2100 h is realized at 1 mA cm at 50% depth of discharge (DOD), which outperforms 10-fold lifetime of the Cu current collector (∼170 h). Moreover, the Cu current collector with a NaF-PVDF protective layer also delivers good cycling stability at 5 mA cm and an ultrahigh DOD (80%). The rational design of the hybrid protective layer offers a new approach to realize stable Na metal batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b12059 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.
View Article and Find Full Text PDFiScience
January 2025
Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia.
Achieving lightweight real-time object detection necessitates balancing model compression with detection accuracy, a difficulty exacerbated by low redundancy and uneven contributions from convolutional layers. As an alternative to traditional methods, we propose Rigorous Gradation Pruning (RGP), which uses a desensitized first-order Taylor approximation to assess filter importance, enabling precise pruning of redundant kernels. This approach includes the iterative reassessment of layer significance to protect essential layers, ensuring effective detection performance.
View Article and Find Full Text PDFSci Rep
January 2025
College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
Poplar (Populus simoni) plantations are crucial in the sandy regions of western Liaoning, serving key roles in wind protection, sand stabilization, soil moisture regulation, and carbon sequestration. However, challenges such as suboptimal stand quality and limited ecological benefits persist. This study aims to elucidate the growth dynamics of poplar plantations and their impact on soil moisture content and soil carbon content in this region.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!