Photoinduced electron and energy transfer through preorganized chromophore, donor, and acceptor arrays are key to light-harvesting capabilities of photosynthetic plants and bacteria. Mimicking the design principles of natural photosystems, we constructed a new luminescent pillared paddle wheel metal-organic framework (MOF), Zn(NDC)(DPTTZ), featuring naphthalene dicarboxylate (NDC) struts that served as antenna chromophores and energy donors and ,-di(4-pyridyl)thiazolo-[5,4-]thiazole (DPTTZ) pillars as complementary energy acceptors and light emitters. Highly ordered arrangement and good overlap between the emission and absorption spectra of these two complementary energy donor and acceptor units enabled ligand-to-ligand Förster resonance energy transfer, allowing the MOF to display exclusively DPTTZ-centric blue emission (410 nm) regardless of the excitation of either chromophore at different wavelengths. In the presence of Hg, a toxic heavy metal ion, the photoluminescence (PL) of Zn(NDC)(DPTTZ) MOF underwent significant red-shift to 450 nm followed by quenching, whereas other transition metal ions (Mn, Fe, Co, Ni, Cu, and Cd) caused only fluorescence quenching but no shift. The free DPTTZ ligand also displayed similar, albeit less efficient, fluorescence changes, suggesting that the heavy atom effect and coordination of Hg and other transition metal ions with the DPTTZ ligands were responsible for the fluorescence changes in the MOF. When exposed to a mixture of different metal ions, including Hg, the MOF still displayed the Hg-specific fluorescence signal, demonstrating that it could detect Hg in the presence of other metal ions. The powder X-ray diffraction studies verified that the framework remained intact after being exposed to Hg and other transition metal ions, and its original PL spectrum was restored upon washing. These studies demonstrated the light-harvesting and Hg sensing capabilities of a new bichromophoric luminescent MOF featuring a seldom-used photoactive ligand, which will likely spark an explosion of TTZ-based MOFs for various optoelectronic applications in near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b01595 | DOI Listing |
Biochemistry
January 2025
Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.
Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea.
In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
School of Pharmacy, Xi'an Medical University, Xi'an, 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an, 710021, China. Electronic address:
In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!