Numerical Investigation of a Methane Leakage from a Geothermal Well into a Shallow Aquifer.

Ground Water

Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy.

Published: July 2020

The potential environmental impacts on subsurface water resources induced by unconventional gas production are still under debate. Solving the controversy regarding the potential adverse effects of gas leakages on groundwater resources is therefore crucial. In this work, an interesting real-world case is presented in order to give further insight into methane multiphase and transport behavior in the shallow subsurface, often disregarded compared to the behavior in the deep subsurface. Multiphase flow and solute transport simulations were performed to assess the vulnerability of an existing shallow unconfined aquifer with respect to a hypothetical methane leakage resulting from a well integrity failure of a former deep geothermal well. The analysis showed that migration of gaseous methane through the aquifer under examination can be extremely fast (of the order of a few minutes), occurring predominantly vertically upwards, close to the well. By contrast, dissolved methane migration is largely affected by the groundwater flow field and occurs over larger time scales (of the order of months/years), covering a greater distance from the well. Overall, the real concern for this site in case of gas leakages is the risk of explosion in the close vicinity of the well. Predicted maximum gaseous fluxes (0.89 to 22.60 m /d) are comparable to those reported for leaking wells, and maximum dissolved methane concentrations may overcome risk mitigation thresholds (7 to 10 mg/L) in a few years. Therefore, surface and subsurface monitoring before decommissioning is strongly advised to ensure the safety of the site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383835PMC
http://dx.doi.org/10.1111/gwat.12943DOI Listing

Publication Analysis

Top Keywords

methane leakage
8
geothermal well
8
gas leakages
8
dissolved methane
8
methane
6
well
6
numerical investigation
4
investigation methane
4
leakage geothermal
4
well shallow
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Research on leakage and diffusion behavior of hydrogen doped natural gas in integrated pipeline corridors based on data drive.

Sci Rep

January 2025

Northwest Sichuan Gas District of Southwest Oil and Gasfield Company, Jiangyou, 621700, China.

With the wide application of hydrogen-doped natural gas (HBNG) in end users, laying pipelines in urban, comprehensive pipe corridors has become increasingly common. However, the leakage and diffusion of hydrogen-doped natural gas in confined or semi-confined spaces (e.g.

View Article and Find Full Text PDF

Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect.

Sensors (Basel)

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.

View Article and Find Full Text PDF

Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems.

Sci Total Environ

January 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.

View Article and Find Full Text PDF

Perspective: Enteric methane mitigation and its impact on livestock hydrogen emissions.

J Dairy Sci

January 2025

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.

In a hydrogen-based economy future, hydrogen leakage is becoming an environmental concern. Ruminants naturally produce small amounts of hydrogen, which is emitted in the environment along with other fermentation gases, such as the GHG methane and carbon dioxide. Here, for the first time, we estimated hydrogen emissions from the global ruminant livestock at 527 kt/yr (95% CI: 399, 654), or about 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!