Non-steroidal selective androgen receptor modulators, including ostarine, have been developed as an alternative to steroidal hormones. Ostarine has shown a beneficial effect on bone in experimental studies, but no data regarding the effect of ostarine on bone healing have yet been reported. We investigated effects of ostarine on bone healing in ovariectomized rats. Sprague-Dawley rats (3 months old) were ovariectomized (Ovx, n = 46) or left intact (Non-Ovx, n = 10). After 8 weeks, an osteotomy of the tibia metaphysis was created in all rats, and the Ovx rats were divided into four groups: untreated Ovx (n = 10) and three Ovx groups (each of 12 rats) treated with ostarine at doses of 0.04, 0.4, or 4 mg/kg BW (OS-0.04, OS-0.4, and OS-4 groups). Five weeks later, bone healing was analyzed. The OS-4 dose enhanced callus formation, increased callus density, accelerated bridging time of the osteotomy, and elevated alkaline phosphatase gene expression in callus and its protein expression in serum. In the Ovx group, most of the callus parameters were diminished. All OS treatments increased the weight of the gastrocnemius muscle, but only partly enhanced uterus weight in OS-0.4 and OS-4. Serum cholesterol level was reduced, and serum phosphorus was elevated in OS-0.04 and OS-4. Ostarine appeared to have a positive effect on early bone healing in ovariectomized rats. Considering its favorable effect on non-osteotomized bone and muscle, this treatment could be further explored as a therapy for osteoporosis. However, possible metabolic side effects should first be evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00223-019-00613-1 | DOI Listing |
ACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFAust Endod J
January 2025
Graduate Program, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
This study reports two cases of traumatised non-vital immature teeth (IT). Both underwent surgical and nonsurgical treatments after healing failure. In the first case, both maxillary central incisors underwent revascularization as the first treatment option.
View Article and Find Full Text PDFJ Periodontal Res
January 2025
Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
Aim: To test a BiO-Optimizing Site Targeted (BOOST) approach to periodontal regeneration by the adjunctive use of locally delivered doxycycline (DOX) 2 weeks prior to minimally invasive surgery in terms of clinical and radiographic outcomes at 1 year.
Methods: For this randomized clinical trial, stage III/IV periodontitis patients presenting sites with intrabony defects and bleeding on probing (BoP+) after steps 1-2 of periodontal treatment were included. Sites were treated via subgingival instrumentation with or without a BOOST approach by local DOX.
J Orthop Translat
January 2025
Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!