A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the role of hydrodynamic interactions in the engineered-assembly of droplet ensembles. | LitMetric

On the role of hydrodynamic interactions in the engineered-assembly of droplet ensembles.

Soft Matter

Department of Chemical Engineering, IISc Bangalore, Bengaluru 560012, Karnataka, India.

Published: October 2019

Droplets, as they flow inside a microchannel, interact hydrodynamically to result in spatio-temporal patterns. The nature of the interaction decides the type of collective behaviour observed. In this context, we study the application of droplet microfluidics in the area of complex-shape particle synthesis. We show how the dynamics of droplet motion, the steady-state characteristics, the short and long-range hydrodynamics, the dependence on inlet conditions etc. are all related to the features that characterize a device like the functionality (producing many shapes) and robustness (insensitivity to fluctuations). Two primary operating regimes are identified, one where long-range interactions are dominant and the other where they are short-range. In the former, the shapes formed by droplets are steady-state solutions to the governing equations, while in the latter they are a function of how the droplets enter the channel (frequency of entry). We show that identifying the inlet conditions for producing a particle of the desired shape requires the use of a systematic approach to design which involves solving an optimization problem (using genetic algorithms) to identify the optimal operating strategy. With the knowledge of the hydrodynamics between the droplets, we demonstrate how one can reduce the complexity of the design process. We also discuss the control strategies required if one were to realize the identified operating strategy experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01528kDOI Listing

Publication Analysis

Top Keywords

inlet conditions
8
operating strategy
8
role hydrodynamic
4
hydrodynamic interactions
4
interactions engineered-assembly
4
engineered-assembly droplet
4
droplet ensembles
4
droplets
4
ensembles droplets
4
droplets flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!