Catalytic antimicrobial robots for biofilm eradication.

Sci Robot

Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA.

Published: April 2019

Magnetically driven robots can perform complex functions in biological settings with minimal destruction. However, robots designed to damage deleterious biostructures could also have important impact. In particular, there is an urgent need for new strategies to eradicate bacterial biofilms as we approach a post-antibiotic era. Biofilms are intractable and firmly attached structures ubiquitously associated with drug-resistant infections and destruction of surfaces. Existing treatments are inadequate to both kill and remove bacteria leading to reinfection. Here we design catalytic antimicrobial robots (CARs) that precisely and controllably kill, degrade and remove biofilms with remarkable efficiency. CARs exploit iron oxide nanoparticles (NPs) with dual catalytic-magnetic functionality that (i) generate bactericidal free radicals, (ii) breakdown the biofilm exopolysaccharide (EPS) matrix, and (iii) remove the fragmented biofilm debris via magnetic field driven robotic assemblies. We develop two distinct CAR platforms. The first platform, the biohybrid CAR, is formed from NPs and biofilm degradation products. After catalytic bacterial killing and EPS disruption, magnetic field gradients assemble NPs and the biodegraded products into a plow-like superstructure. When driven with an external magnetic field, the biohybrid CAR completely removes biomass in a controlled manner, preventing biofilm regrowth. Biohybrid CARs can be swept over broad swathes of surface or can be moved over well-defined paths for localized removal with microscale precision. The second platform, the 3D molded CAR, is a polymeric soft robot with embedded catalytic-magnetic NPs, formed in a customized 3D printed mold to perform specific tasks in enclosed domains. Vane-shaped CARs remove biofilms from curved walls of cylindrical tubes, and helicoid-shaped CARs drill through biofilm clogs, while simultaneously killing bacteria. In addition, we demonstrate applications of CARs to target highly confined anatomical surfaces in the interior of human teeth. These 'kill-degrade-and-remove' CARs systems could have significant impact in fighting persistent biofilm-infections and in mitigating biofouling of medical devices and diverse surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748647PMC
http://dx.doi.org/10.1126/scirobotics.aaw2388DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
catalytic antimicrobial
8
antimicrobial robots
8
remove biofilms
8
biohybrid car
8
cars
7
biofilm
6
robots
4
robots biofilm
4
biofilm eradication
4

Similar Publications

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.

View Article and Find Full Text PDF

Transcranial magnetic stimulation combined with intracranial local field potential recordings in humans (TMS-iEEG) represents a new method for investigating electrophysiologic effects of TMS with spatiotemporal precision. We applied TMS-iEEG to the dorsolateral prefrontal cortex (dlPFC) in two subjects and demonstrate evoked activity in the subgenual anterior cingulate cortex (sgACC). This study provides direct electrophysiologic evidence that dlPFC TMS, as targeted for depression treatment, can modulate brain activity in the sgACC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!