Background: Free fatty acids, also known as nonesterified fatty acids, are proinflammatory molecules that induce insulin resistance in nonpregnant individuals. Nevertheless, the concentration of these molecules has not been systematically addressed in pregnant women.

Objective: This meta-analysis is aimed at evaluating the difference in free fatty acid plasma levels between women with gestational diabetes and healthy pregnant controls and their intrinsic and extrinsic determinants.

Methods: We performed a systematic search to find relevant studies published in English and Spanish using PubMed, SCOPUS, and ISI Web of Knowledge. We included observational studies measuring the mean plasma levels of free fatty acids among gestational diabetes and healthy pregnant women, with at least ten subjects being analyzed in each group. The standardized mean difference (SMD) by random effects modeling was used. Heterogeneity was assessed using Cochran's , , and statistics.

Results: Among the 290 identified studies, twelve were selected for analysis. A total of 2426 women were included, from which 21% were diagnosed as having gestational diabetes. There were significantly higher levels of free fatty acids among women with gestational diabetes (SMD: 0.86; 0.54-1.18; < 0.001) when compared to healthy pregnant controls and between-study heterogeneity ( = 91%). The metaregression analysis showed that the gestational age at inclusion was the only cofactor influencing the mean levels of free fatty acids, indicating a trend towards lower plasma levels of free fatty acids later in gestation (estimate: -0.074; -0.143 to -0.004; = 0.036). No significant publication bias was found nor a trend towards greater results in small studies.

Conclusions: Women with gestational diabetes have higher levels of free fatty acids when compared to healthy pregnant controls. More investigation is needed to assess the potential role of free fatty acids in the prediction of gestational diabetes earlier in pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721400PMC
http://dx.doi.org/10.1155/2019/7098470DOI Listing

Publication Analysis

Top Keywords

free fatty
36
fatty acids
36
gestational diabetes
28
levels free
24
plasma levels
16
women gestational
16
healthy pregnant
16
pregnant controls
12
fatty
10
free
9

Similar Publications

An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO as a signal amplifier for sensitive detection of heart-type fatty acid binding protein.

Mikrochim Acta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.

View Article and Find Full Text PDF

Modulating the aroma and taste profile of soybean using novel strains for fermentation.

Curr Res Food Sci

December 2024

Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.

A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.

View Article and Find Full Text PDF

The changes of intestinal flora and metabolites in atopic dermatitis mice.

Front Microbiol

December 2024

Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China.

Introduction: Atopic dermatitis (AD) is an allergic disease caused by various factors that can affect an individual's appearance and cause psychological stress. Therefore, it is necessary to investigate the underlying mechanisms and develop effective treatment strategies. The gut microbiota and bacterial metabolism play crucial roles in human diseases.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism.

BMC Plant Biol

December 2024

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.

Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.

Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!