The natural topographical microchannels in human skin have recently been shown to be capable of guiding propagating cracks. In this article we examine the ability to guide fracture by incorporating similar topographical features into both single, and dual layer elastomer membranes that exhibit uniform thickness. In single layer membranes, crack guidance is achieved by minimizing the nadir thickness of incorporated v-shaped channels, maximizing the release of localized strain energy. In dual layer membranes, crack guidance along embedded channels is achieved via interfacial delamination, which requires less energy to create a new surface than molecular debonding. In both membrane types, guided crack growth is only temporary. However, utilizing multiple embedded channels, non-contiguous crack control can be maintained at angles up to 45° from the mode I fracture condition. The ability to control and deflect fracture holds great potential for improving the robustness and lifespan of flexible electronics and stretchable sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748918PMC
http://dx.doi.org/10.1038/s41598-019-49986-1DOI Listing

Publication Analysis

Top Keywords

dual layer
8
layer membranes
8
membranes crack
8
crack guidance
8
embedded channels
8
embedding topography
4
topography enables
4
fracture
4
enables fracture
4
fracture guidance
4

Similar Publications

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Information propagation dynamics on heterogeneous-homogeneous coupling bi-layer networks.

Sci Rep

December 2024

State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, 100024, China.

The proliferation of multi-platform network information has expanded communication channels for users, enabling the integration and dissemination of information across both Social Networking Services (SNS)-type app and Instant Message (IM)-type app. With the intensification of convergent communication, some users in the two types of apps show active alternation in spreading information to each other's platforms. The study of the evolution trend of information in different platforms is of great practical significance for the mastery of the communication law.

View Article and Find Full Text PDF

Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.

View Article and Find Full Text PDF

Currently, the main limitations of Pd-coated Nb-TiFe dual-phase alloys include insufficient hydrogen permeability, susceptibility to hydrogen embrittlement (HE), and poor tolerance of HS poisoning. To address these issues, this study proposes a series of improvements. First, a novel NbTiFe alloy composed of a well-aligned Nb-TiFe eutectic was successfully prepared using directional solidification (DS) technology.

View Article and Find Full Text PDF

is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!