Radiation exposure and associated radiation risks are major concerns for fetal development for pregnant patients who undergo radiation therapy or diagnostic imaging procedures. In order to accurately estimate the radiation dose to the fetus and assess the uncertainty of fetal position and rotation, three hybrid computational fetus phantoms were constructed using magnetic resonance imaging (MRI) for each fetus model as a starting point to construct a complete anatomically accurate fetus, gravid uterus, and placenta. A total of 27 fetal organs were outlined from radiological images via the Velocity Treatment Planning System. The DICOM-Structure set was imported to Rhinoceros software for further reconstruction of 3D fetus phantom model sets. All fetal organ masses were compared with ICRP-89 reference data. Our fetal model series corresponds to 20, 31, and 35 weeks of pregnancy, thus covering the second and third trimester. Fetal positions and locations were carefully adapted to represent the real fetus locations inside the uterus for each trimester of pregnancy. The new series of hybrid computational fetus models together with pregnant female models can be used in evaluating fetal radiation doses in diagnostic imaging and radiotherapy procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab44f8DOI Listing

Publication Analysis

Top Keywords

hybrid computational
12
fetal
8
radiological images
8
diagnostic imaging
8
computational fetus
8
fetus
7
radiation
6
construction realistic
4
realistic hybrid
4
computational fetal
4

Similar Publications

Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.

View Article and Find Full Text PDF

Diabetes mellitus (DM) may lead to microvascular and macrovascular complications. Screening for these complications is crucial and non-invasive methods with high-dissemination potential are needed. Diabetic peripheral neuropathy (DPN) is particularly challenging to screen due to the lack of reliable clinical markers and endpoints.

View Article and Find Full Text PDF

Motivation: Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognisable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, for example, to the cancer evolution study.

View Article and Find Full Text PDF

Purpose: Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality for CT-LE. Therefore, this study investigated image noise and image quality with SR-DLR compared with conventional DLR (C-DLR) and hybrid iterative reconstruction (hybrid IR).

View Article and Find Full Text PDF

Human papillomavirus type 16 (HPV-16) is a key driver in the development of cervical carcinoma, with the integration of its genome into the host DNA marking a critical step in disease progression. Monitoring the physical state of HPV-16, particularly the transition from episomal to integrated forms, is essential for evaluating the risk of malignancy development in cervix. This study presents the development of a duplex electrochemical biosensor for the simultaneous detection of the E2 and E6 genes of HPV-16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!