Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Copper nanoparticles (NPs) are considered as a promising alternative for silver and gold NPs in conductive inks for the application of printing electronics, since copper shows a high electrical conductivity but is significantly cheaper than silver and gold. In this study, copper NPs were synthesized in the gas phase by transferred arc discharge, which has demonstrated scale-up potential. Depending on the production parameters, copper NPs can be continuously synthesized at a production rate of 1.2-5.5 g h, while their Brunauer-Emmett-Teller sizes were maintained below 100 nm. To investigate the suitability in electronic printing, we use ball milling technique to produce copper conductive inks. The effect of ball milling parameters on ink stability was discussed. In addition, the electrical resistivity of copper films sintered at 300 °C in reducing atmosphere was measured to be 5.4 ± 0.6 μΩ cm which is about three times higher than that of bulk copper (1.7 μΩ cm). This indicates that conductive inks prepared from gas-phase synthesized copper NPs are competitive to the conductive inks prepared from chemically synthesized copper NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab4524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!