is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive allele was expressed in In the absence of doxycycline, this allele overexpressed , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture. is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection , promoting more effective clearance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751057 | PMC |
http://dx.doi.org/10.1128/mBio.01767-19 | DOI Listing |
Hortic Res
January 2025
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.
View Article and Find Full Text PDFClin Epigenetics
January 2025
School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
Enriched environment (EE), as a non-pharmacological intervention, has garnered considerable attention for its potential to ameliorate neurodegenerative diseases (NDs). This review delineated the impact of EE on the biological functions associated with NDs, emphasizing its role in enhancing neural plasticity, reducing inflammation, and bolstering cognitive performance. We discussed the molecular underpinnings of the effects of EE, including modulation of key signaling pathways such as extracellular regulated kinase 1/2 (ERK1/2), mitogen-activated protein kinases (MAPK), and AMPK/SIRT1, which were implicated in neuroprotection and synaptic plasticity.
View Article and Find Full Text PDFBMC Cancer
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
Background: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Various factors in the tumor environment (TME) can lead to the activation of endoplasmic reticulum stress (ERS), thereby affecting the occurrence and development of tumors. The objective of our study was to develop and validate a radiogenomic signature based on ERS to predict prognosis and systemic combination therapy response.
View Article and Find Full Text PDFJ Med Chem
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
Pulmonary inflammation is the main cause of lung injury. Phosphodiesterase 4 (PDE4) is a promising anti-inflammatory target for the treatment of respiratory diseases. Herein, we designed and synthesized 43 compounds in two novel series of benzimidazole derivatives as PDE4 inhibitors.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
The Director's Office, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
Atherosclerosis, a chronic inflammatory condition characterized by plaque formation, often leads to instability, particularly under Type 2 diabetes mellitus (T2DM) conditions, which exacerbate cardiovascular risks. However, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the correlation between acute coronary syndrome (ACS) and serum levels of Nε-carboxyethyl-lysin (CEL), a prominent advanced glycation end product (AGE) elevated in T2DM, in a cohort of 225 patients with coronary artery disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!