Medaka ( sp.) is an important fish species in ecotoxicology and considered as a model species due to its biological features including small body size and short generation time. Since Japanese medaka is a freshwater species with access to an excellent genome resource, the marine medaka is also applicable for the marine ecotoxicology. In genome era, a high-density genetic linkage map is a very useful resource in genomic research, providing a means for comparative genomic analysis and verification of genome assembly. In this study, we developed a high-density genetic linkage map for using restriction-site associated DNA sequencing (RAD-seq). The genetic map consisted of 24 linkage groups with 2,481 single nucleotide polymorphism (SNP) markers. The total map length was 1,784 cM with an average marker space of 0.72 cM. The genetic map was integrated with the reference-assisted chromosome assembly (RACA) of , which anchored 90.7% of the assembled sequence onto the linkage map. The values of complete Benchmarking Universal Single-Copy Orthologs were similar to RACA assembly but N50 (23.74 Mb; total genome length 779.4 Mb; gap 5.29%) increased to 29.99 Mb (total genome length 778.7 Mb; gap 5.2%). Using MapQTL analysis with SNP markers, we identified a major quantitative trait locus for sex traits on the Om10. The integration of the genetic map with the reference genome of marine medaka will serve as a good resource for studies in molecular toxicology, genomics, CRISPR/Cas9, and epigenetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829124 | PMC |
http://dx.doi.org/10.1534/g3.119.400708 | DOI Listing |
Sci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
Background: The gray snapper (Lutjanus griseus) is a marine reef fish commonly found in coastal and shelf waters of the tropical and subtropical western Atlantic Ocean. In this work, a draft reference genome was developed to support population genomic studies of gray snapper needed to assist with conservation and fisheries management efforts.
Methods And Results: Hybrid assembly of PacBio and Illumina sequencing reads yielded a 1,003,098,032 bp reference across 2039 scaffolds with N50 and L50 values of 1,691,591 bp and 163 scaffolds, respectively.
Alzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: To date, Alzheimer's disease (AD) research has principally focused on neurons. In contrast, recent studies suggest that genetic mechanisms drive microglia towards prolonged inflammation in AD brains, exacerbating neurodegeneration. Indeed, many of the 70 disease-associated loci uncovered with genome-wide association studies (GWAS) reside near genes related to microglial function, such as TREM2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: Hispanic/Latino populations are underrepresented in Alzheimer Disease (AD) genetic studies. The Puerto Rican (PR) population, a three-way admixed (European, African, and Amerindian) population is the second-largest Hispanic group in the continental US. We performed a genome-wide association study (GWAS) in the PR population to identify novel AD susceptibility loci and characterize known AD genetic risk loci.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: The FunGen-xQTL project has significantly advanced genetics by developing and exploring novel quantitative trait loci (QTL) types in human brains, enriching our understanding of complex neurological disease etiology. We broadened the scope of epigenomic QTL analysis, integrating histone acetylation QTLs (haQTLs) and methylation QTLs (mQTLs) that affect multiple histone acetylation peaks or methylation CpG sites spatially. Additionally, we investigated a new category of splicing QTLs (sQTLs) implicated in nonsense-mediated decay (NMD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!