Objective: To evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.
Design: Computer simulation modelling and machine learning.
Setting: Seven acute stroke units.
Participants: Anonymised clinical audit data for 7864 patients.
Results: Three factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%-73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machine learning model could predict the benefit of 'exporting' clinical decision making from one hospital to another, while allowing for differences in patient population between hospitals. By applying pathway simulation and machine learning together, we found a realistic ceiling of 15%-25% use of thrombolysis across different hospitals and, in the seven hospitals studied, a realistic opportunity to double the number of patients with no significant disability that may be attributed to thrombolysis.
Conclusions: National clinical audit may be enhanced by a combination of pathway simulation and machine learning, which best allows for an understanding of key levers for improvement in hyperacute stroke pathways, allowing for differences between local patient populations. These models, based on standard clinical audit data, may be applied at scale while providing results at individual hospital level. The models facilitate understanding of variation and levers for improvement in stroke pathways, and help set realistic targets tailored to local populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756466 | PMC |
http://dx.doi.org/10.1136/bmjopen-2018-028296 | DOI Listing |
Syst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Pharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
J Integr Neurosci
January 2025
Department of Brain Disease Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031 Hefei, Anhui, China.
Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.
Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.
J Biomol Struct Dyn
January 2025
Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!