The cleavage and polyadenylation reaction is a crucial step in transcription termination and pre-mRNA maturation in human cells. Despite extensive research, the encoding of polyadenylation-mediated regulation of gene expression within the DNA sequence is not well understood. Here, we utilized a massively parallel reporter assay to inspect the effect of over 12,000 rationally designed polyadenylation sequences (PASs) on reporter gene expression and cleavage efficiency. We find that the PAS sequence can modulate gene expression by over five orders of magnitude. By using a uniquely designed scanning mutagenesis data set, we gain mechanistic insight into various modes of action by which the cleavage efficiency affects the sensitivity or robustness of the PAS to mutation. Furthermore, we employ motif discovery to identify both known and novel sequence motifs associated with PAS-mediated regulation. By leveraging the large scale of our data, we train a deep learning model for the highly accurate prediction of RNA levels from DNA sequence alone ( = 0.83). Moreover, we devise unique approaches for predicting exact cleavage sites for our reporter constructs and for endogenous transcripts. Taken together, our results expand our understanding of PAS-mediated regulation, and provide an unprecedented resource for analyzing and predicting PAS for regulatory genomics applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771402 | PMC |
http://dx.doi.org/10.1101/gr.247312.118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!