The contents and stability of soil dissolved organic matter (DOM) can affect key processes of soil carbon and nitrogen cycle. The responses of DOM content and its spectral structure pro-perties in forest soils to climate change remain unclear. We collected soil samples from two temperate forests, i.e., the broadleaf and Korean pine mixed forest (BKPF) and adjacent secondary white birch forest (WBF), in Changbai Mountains, northeastern China. Using a combination of three-dimensional fluorescence spectrum and parallel factor analysis, a simulated freeze-thaw experiment was conducted in the laboratory. We examined the effects of freeze-thaw intensity, freeze-thaw cycle and their interaction on the content, components and spectral properties of DOM leached from the two forest surface soils with different moisture levels. The results showed that DOM content and components of soil leachates varied with forest types, soil moisture, freeze-thaw intensity and freeze-thaw cycle. The DOM content in the leachates was lowest at medium moisture level and was significantly affected by the high freeze-thaw intensity. In addition, the DOM content increased first and then decreased with the increases of freeze-thaw cycles. Three fluorescence components of DOM in the forest soil leachates were identified as humic acid-like DOM, fulvic acid-like DOM and protein-like DOM. The DOM components of BKPF soil leachates were mainly consisted of fulvic acid-like substances with a high humification index. However, the DOM from WBF soil leachates was dominated by humic acid-like substances with low stability, and the three fluorescence components were significantly affected by the freeze-thaw intensity. Results from the redundancy analysis showed that under the experimental conditions, forest type played a leading role in changing DOM properties. The DOM content and its three fluorescence intensities of WBF soil leachates were higher than those of BKPF. Soil moisture significantly affected the aromaticity of DOM in the forest soil leachates, and the DOM aromaticity of soil leachates from the two forest stands ranked as medium moisture > high moisture > low moisture. With the increases of freeze-thaw intensity, the DOM aromaticity of BKPF soil leachates significantly decreased. Furthermore, the increases of freeze-thaw cycles significantly increased the humification degree of DOM in the forest soil leachates. Therefore, upon different freeze-thaw disturbance, the DOM content and bioavailability of soil leachates with low moisture tended to increase, particularly in the WBF soil leachates, which may result in an increased lea-ching of DOM in temperate forest soils during spring freeze-thaw periods. The results provide a refe-rence for further investigating DOM turnover in temperate forest soils during spring freeze-thaw periods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201909.005 | DOI Listing |
Environ Sci Technol
January 2025
National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.
Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.
View Article and Find Full Text PDFMicroorganisms
January 2025
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.
This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China.
Compared with zero-valent iron, iron sulfide has more diverse reactive species and higher reductivity, but it is still prone to be gradually deactivated due to various passivation factors. In this study, a novel reductive material (BMMW@OA) was prepared by ball milling of mackinawite (MW) as raw material and oxalic acid (OA) as modifier, so as to simultaneously improve its reductivity and stability by continuous releasing reductive species and maintaining freshness of the material surface. The BMMW@OA (w/w of MW/OA = 4/1) effectively removed Cr(Ⅵ) from water with wide pH adaptability.
View Article and Find Full Text PDFSci Rep
January 2025
Shanxi Provincial Geological Prospecting Bureau, Taiyuan, 030001, China.
In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!