Poly(ADP-ribose) polymerase (PARP) inhibitors are selectively cytotoxic in cancer cells with defects in homologous recombination (HR) (e.g., due to BRCA1/2 mutations). However, not all HR-deficient tumors efficiently respond to PARP inhibition and often acquire resistance. It is therefore important to uncover how PARP inhibitors induce cytotoxicity and develop combination strategies to potentiate PARP inhibitor efficacy in HR-deficient tumors. In this study, we found that forced mitotic entry upon ATR inhibition potentiates cytotoxic effects of PARP inhibition using olaparib in BRCA2-depleted and Brca2 knockout cancer cell line models. Single DNA fiber analysis showed that ATR inhibition does not exacerbate replication fork degradation. Instead, we find ATR inhibitors accelerate mitotic entry, resulting in the formation of chromatin bridges and lagging chromosomes. Furthermore, using genome-wide single-cell sequencing, we show that ATR inhibition enhances genomic instability of olaparib-treated BRCA2-depleted cells. Inhibition of CDK1 to delay mitotic entry mitigated mitotic aberrancies and genomic instability upon ATR inhibition, underscoring the role of ATR in coordinating proper cell cycle timing in situations of DNA damage. Additionally, we show that olaparib treatment leads to increased numbers of micronuclei, which is accompanied by a cGAS/STING-associated inflammatory response in BRCA2-deficient cells. ATR inhibition further increased the numbers of cGAS-positive micronuclei and the extent of cytokine production in olaparib-treated BRCA2-deficient cancer cells. Altogether, we show that ATR inhibition induces premature mitotic entry and mediates synergistic cytotoxicity with PARP inhibition in HR-deficient cancer cells, which involves enhanced genomic instability and inflammatory signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822251PMC
http://dx.doi.org/10.1002/1878-0261.12573DOI Listing

Publication Analysis

Top Keywords

atr inhibition
28
mitotic entry
20
genomic instability
16
cancer cells
16
parp inhibition
12
inhibition
11
atr
9
premature mitotic
8
inhibition potentiates
8
instability inflammatory
8

Similar Publications

Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (CHO) and two amide compounds (tentatively identified as CHNO and CHNO), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Background: Promising cancer treatments, such as DDR inhibitors, are often challenged by the heterogeneity of responses in clinical trials. The present work aimed to build a computational framework to address those challenges.

Methods: A semi-mechanistic pharmacokinetic-pharmacodynamic model of tumour growth inhibition was developed to investigate the efficacy of PARP and ATR inhibitors as monotherapies, and in combination.

View Article and Find Full Text PDF

DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells.

View Article and Find Full Text PDF

Exploiting synthetic lethality in PDAC with antibody drug conjugates and ATR inhibition.

Eur J Med Chem

January 2025

Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with poor prognosis. Antibody-drug conjugates (ADCs) and their combinations with various anti-tumor drugs have made great progress. Camptothecin, and its derivatives (Dxd, SN-38 or exatecan) targeted TOP1 are effective payloads due to their potent anti-tumor activity.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!