Regulation of inflammation as an anti-aging intervention.

FEBS J

Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Portugal.

Published: January 2020

Aging is accompanied by a decline in physiological integrity and a loss of regenerative capacity in many tissues. The development of interventions that prevent or reverse age-related disease requires a better understanding of the interplay of cell intrinsic, inter-cellular communication and systemic deregulations that underlie the aging process. Immune dysfunction and changes in inflammatory pathways are transversal contributors to the aging process and are essential propagators of tissue deterioration. Here, we propose and discuss the rejuvenation potential of interventions that target chronic inflammation and how modulation of tissue repair capacity could be an important mediator of such anti-aging strategies. We highlight how current knowledge on the systemic nature of inflammatory dysregulation in old organisms, together with the development of new animal models that allow for the isolation of the inflammatory component of aging, could provide new targets for interventions in aging based on the modulation of inflammatory pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15061DOI Listing

Publication Analysis

Top Keywords

aging process
8
inflammatory pathways
8
aging
5
regulation inflammation
4
inflammation anti-aging
4
anti-aging intervention
4
intervention aging
4
aging accompanied
4
accompanied decline
4
decline physiological
4

Similar Publications

Genesis and regulation of C-terminal cyclic imides from protein damage.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.

View Article and Find Full Text PDF

Molecular basis for the stepwise and faithful maturation of the 20 proteasome.

Sci Adv

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.

The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.

View Article and Find Full Text PDF

Background: To ensure appropriate care for the individual older adult, an ideal treatment should align with patients' values. However, healthcare professionals struggle with how to elucidate patient values effectively. To offer guidance to healthcare professionals, we performed a scoping review, thereby mapping and categorizing instruments specifically developed to elucidate values of older adults in clinical practice.

View Article and Find Full Text PDF

Background: Aging is associated with sustained low-grade inflammation, which has been linked to age-related diseases and mortality. Long-term exercise programs have been shown to be effective to for attenuating this process; however, subsequent detraining might negate some of these benefits. Master athletes, as a model of lifelong consistent exercise practice, have been suggested to present similar inflammatory profiles to untrained young adults.

View Article and Find Full Text PDF

Objectives: The aim of this systematic review was to assess the effect of DM (Type 1 and Type 2 Diabetes) and hyperglycaemia on the physical and mechanical properties of dentine which is critical for successful endodontic treatment.

Method: An electronic search of the following databases: PubMed, MEDLINE, Web of Science and the grey literature was performed up until July 2024. In vitro and in vivo studies on the effect of DM or hyperglycaemia on the mechanical and physical properties of dentine were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!