The purposes of this work are to evaluate the antimicrobial, antibiofilm, anticancer, and antioxidant abilities of anisotropic zinc oxide nanoparticles (ZnO NPs) synthesized by a cost-effective and eco-friendly sol-gel method. The synthesized ZnO NPs were entirely characterized by UV-Vis, XRD, FTIR, HRTEM, zeta potential, SEM mapping, BET surface analyzer, and EDX elemental analysis. Antimicrobial and antibiofilm activities of ZnO NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing serious diseases like urinary tract infection (UTI). The anticancer activity was performed against Ehrlich ascites carcinoma (EAC). Additionally, antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was observed. The synthesized ZnO NPs exhibited an absorption peak at 385.0 nm characteristic to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM, and XRD confirmed the anisotropic crystalline nature of the prepared ZnO NPs with an average particle size of 68.2 nm. The calculated surface area of the prepared ZnO NPs was 10.62 m/g and the porosity was 13.16%, while pore volume was calculated to be 0.013 cm/g and the average pore size was about 3.10 nm. The prepared ZnO NPs showed promising antimicrobial activity against all tested UTI-causing pathogens. It showed a prominent antimicrobial capability against Candida tropicalis with a zone of inhibition (ZOI) reaching 22.4 mm, 13 mm ZOI for Bacillus subtilis, and 12.5 mm ZOI for Pseudomonas aeruginosa. Additionally, the prepared ZnO NPs showed enhanced biofilm repression of about 79.33%, 72.94%, and 33.68% against B. subtilis, C. tropicalis, and P. aeruginosa, respectively. Moreover, the prepared ZnO NPs had a powerful antioxidant property with 33.0% scavenging ability after applied DPPH assay. Surprisingly, upon ZnO NPs treatment, cancer cell viability reduced from 100 to 58.5% after only 24 h due to their unique antitumor activity. Therefore, according to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical, and medical challenges, particularly in the EAC and UTI medications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-019-01894-1DOI Listing

Publication Analysis

Top Keywords

zno nps
40
prepared zno
20
zno
10
nps
10
anisotropic zinc
8
zinc oxide
8
oxide nanoparticles
8
antimicrobial antibiofilm
8
synthesized zno
8
prepared
5

Similar Publications

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.

View Article and Find Full Text PDF

There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!