Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Cyclic adenosine monophosphate (cAMP) is the predominant intracellular second messenger that transduces signals from Gs-coupled receptors. Intriguingly, there is evidence from various cell types that an extracellular cAMP pathway is active in the extracellular space. Herein, we investigated the role of extracellular cAMP in the lung and examined whether it may act on pulmonary vascular cell proliferation and pulmonary vasculature remodelling in the pathogenesis of pulmonary hypertension (PH).
Methods And Results: The expression of cyclic AMP-metabolizing enzymes was increased in lungs from patients with PH as well as in rats treated with monocrotaline and mice exposed to Sugen/hypoxia. We report that inhibition of the endogenous extracellular cAMP pathway exacerbated Sugen/hypoxia-induced lung remodelling. We found that application of extracellular cAMP induced an increase in intracellular cAMP levels and inhibited proliferation and migration of pulmonary vascular cells in vitro. Extracellular cAMP infusion in two in vivo PH models prevented and reversed pulmonary and cardiac remodelling associated with PH. Using protein expression analysis along with luciferase assays, we found that extracellular cAMP acts via the A2R/PKA/CREB/p53/Cyclin D1 pathway.
Conclusions: Taken together, our data reveal the presence of an extracellular cAMP pathway in pulmonary arteries that attempts to protect the lung during PH, and suggest targeting of the extracellular cAMP signalling pathway to limit pulmonary vascular remodelling and PH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314640 | PMC |
http://dx.doi.org/10.1093/cvr/cvz244 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!