Modeling nanoribbon peeling.

Nanoscale

International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy. and CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy and The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy.

Published: October 2019

The lifting, peeling and exfoliation of physisorbed ribbons (or flakes) of 2D material such as graphene off a solid surface are common and important manoeuvres in nanoscience. The feature that makes this case peculiar is the structural lubricity generally realized by stiff 2D material contacts. We model theoretically the mechanical peeling of a nanoribbon of graphene as realized by the tip-forced lifting of one of its extremes off a flat crystal surface. The evolution of shape, energy, local curvature and body advancement are ideally expected to follow a succession of regimes: (A) initial prying, (B) peeling with stretching but without sliding (stripping), (C) peeling with sliding, (D) liftoff. In the case where in addition the substrate surface corrugation is small or negligible, then (B) disappears, and we find that the (A)-(C) transition becomes universal, analytical and sharp, determined by the interplay between bending rigidity and adsorption energy. This general two-stage peeling transition is identified as a sharp crossover in published data of graphene nanoribbons pulled off an atomic-scale Au(111) substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr04821aDOI Listing

Publication Analysis

Top Keywords

peeling
6
modeling nanoribbon
4
nanoribbon peeling
4
peeling lifting
4
lifting peeling
4
peeling exfoliation
4
exfoliation physisorbed
4
physisorbed ribbons
4
ribbons flakes
4
flakes material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!