The handcrafted fabrication of a pyramidal mold on a silicon wafer for nanopatterning was investigated. This process started with the manual delivery of an aqueous glycerol solution onto the SiO/Si wafer using a micropipette and subsequent drying to form a hemisphere whose diameter is in the range of hundreds of micrometers. A coating of polystyrene (PS) onto this wafer generates a circular hole caused by dewetting. Subsequently, anisotropic wet-etching with the PS film as a mask produces a pyramidal trench, whose apex approaches hundreds of nanometers. Various elastomeric materials were casted into this pyramidal mold. A pyramidal tip mounted on a simple micropositioner was used for electrochemistry and patterning of a protein. First, an agarose hydrogel was cast with a hydrogel pen for the electrochemical reaction (HYPER). The redox reaction at the HYPER-electrode interface demonstrated the characteristics of an ultramicroelectrode or bulk electrode based on the contact area. Second, the pyramidal polydimethylsiloxane served as a polymer pen for the contact printing of silane on a glass substrate. After the successive immobilization of biotin and avidin with fluorescence labeling, the resulting fluorescence image demonstrated the successful patterning of the protein. This new process for the creation of a pyramidal mold, referred to as a "do-it-yourself" process, offers advantages to nonspecialists in nanotechnology compared to conventional lithography, specifically simplicity, rapidity, and low cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740185 | PMC |
http://dx.doi.org/10.1021/acsomega.9b01995 | DOI Listing |
Vet Microbiol
February 2025
Department of Animal Science, ETSEA, Universitat de Lleida, Lleida 25198, Spain. Electronic address:
Streptococcus suis (S. suis) is a major pathogen for pigs, causing large economic losses to the swine industry. Moreover, this bacterium has a zoonotic potential, being capable of infecting humans in close contact with pigs or, less frequently, through contact with pork products.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Problem: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manmade visual details that are complex to generalize across ultrasound images utilizing distinct techniques.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:
Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.
View Article and Find Full Text PDFSci Rep
December 2024
School of Construction Machinery, Shandong Jiaotong University, Jinan, 250023, China.
Injection molded parts are increasingly utilized across various industries due to their cost-effectiveness, lightweight nature, and durability. However, traditional defect detection methods for these parts often rely on manual visual inspection, which is inefficient, expensive, and prone to errors. To enhance the accuracy of defect detection in injection molded parts, a new method called MRB-YOLO, based on the YOLOv8 model, has been proposed.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Mechanical Industrial and Energy Systems, College of Engineering and Technology (AIC), University of Sargodha, Sargodha, Pakistan.
This painless method allows drugs to penetrate the outer skin layer, offering several advantages over alternative administration routes, including ease of use and the ability to bypass enterohepatic circulation. Among transdermal drug delivery systems (TDDS), microneedle patches (MNPs) are emerging as an innovative approach for minimally invasive drug delivery, enhancing the skin permeation of substances ranging from macro to micro sizes. This study explores dissolvable microneedle patches (dMNPs) as a novel method to improve the systemic delivery of empagliflozin, an SGLT-2 inhibitor, commonly used to manage type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!