Silver nanoparticles (AgNPs) and silver/quartz nanocomposite (Ag/Q)NPs)) were synthesized by sol-gel method using table sugar as chelating agent. The synthesized nanosized materials were used for mercury ions adsorption from aqueous solutions The materials were characterized by X-ray diffraction (XRD), Transmission Electron microscope (TEM), and surface area (BET). Adsorption of Hg (10 mg/l) is strongly dependent on time, initial metal concentration, dose of adsorbent and pH value. Silver/quartz nanocomposite ((Ag/Q)NPs)) shows better efficiency than individual silver nanoparticles (AgNPs). This composite removed mercury ions from the aqueous solution with efficiency of 96% at 60 min with 0.5g adsorbent dosage at pH 6. The adsorption process explained well by the pseudo-second-order kinetic model. In conclusion silver/quartz nanocomposite (Ag/Q)NPs)) shows higher removal efficiency for mercury ions from aqueous solutions than individual silver naoparticles (AgNPs) or quartz (Q).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742848 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02415 | DOI Listing |
Heliyon
September 2019
National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt.
Silver nanoparticles (AgNPs) and silver/quartz nanocomposite (Ag/Q)NPs)) were synthesized by sol-gel method using table sugar as chelating agent. The synthesized nanosized materials were used for mercury ions adsorption from aqueous solutions The materials were characterized by X-ray diffraction (XRD), Transmission Electron microscope (TEM), and surface area (BET). Adsorption of Hg (10 mg/l) is strongly dependent on time, initial metal concentration, dose of adsorbent and pH value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!