Objective: Per-implantitis is one of the implant treatment complications. Dentists have failed to restore damaged periodontium by using conventional therapies. Tissue engineering (stem cells, scaffold and growth factors) aims to reconstruct natural tissues. The paper aimed to isolate both periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) and use them in a co-culture method to create three-layered cell sheets for reconstructing natural periodontal ligament (PDL) tissue.

Materials And Methods: BMMSCs were isolated from rabbit tibia and femur, and PDLSC culture was established from the lower right incisor. The cells were co-cultured to induce BMMSC differentiation into PDL cells. Cell morphology, stem cells and PDL-specific markers (CD90, CD34, and periostin) were also detected using immunofluorescent assay. Co-cultured cell monolayers were detached using temperature-responsive tissue culture dishes and collagen graft to create the three-layer construct. The 3D-engineered tissue was examined histologically and by field emission scanning electron microscopy (FESEM).

Results: BMMSCs co-cultured with PDLSCs successfully induced more PDL cells. The newly induced PDL cells exhibited periostin and CD90 expression. Fluorescence green intensity was measured for the co-cultured cells that were stained with periostin, the mean fluorescence green intensity (periostin expression) was significantly higher for the newly induced PDL cells after 1, 2, and 3 weeks when compared with control (BM-MSCs), at 21 days non-significant difference was measured when compared with control (PDLSCs).The results showed the successful formation of 3D multilayer PDL tissue. Histological cross-section showed cell sheets and the stable adhesion between them. FESEM examination was conducted for the cross-section, showing three-layered cell sheets with stable adhesion between cells.

Conclusions: The results of this paper report that the three layered-cell sheets were successfully constructed by the novel use of collagen graft as a scaffold to be used in treatment of periodontitis and to envelop the dental implants to create biohybrid implant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739433PMC
http://dx.doi.org/10.1016/j.reth.2019.08.002DOI Listing

Publication Analysis

Top Keywords

cell sheets
16
stem cells
16
pdl cells
16
periodontal ligament
12
induced pdl
12
cells
10
co-culture method
8
three-layered cell
8
collagen graft
8
newly induced
8

Similar Publications

Lineage tracing based on modern live imaging approaches enables to visualize, reconstruct, and analyze the developmental history, fate, and dynamic behaviors of cells in vivo in a direct, comprehensive, and quantitative manner. Light-sheet fluorescence microscopy (LSFM) has greatly boosted lineage tracing efforts, because fluorescently labeled specimens can be imaged in their entirety, over long periods of time, with high spatiotemporal resolution and minimal photodamage. In addition, an increasing arsenal of commercial and open-source software solutions for cell and nuclei segmentation and tracking can be employed to convert data from pixel-based to object-based representations, and to reconstruct the lineages of cells in their native context as they organize in tissues, organs, and whole organisms.

View Article and Find Full Text PDF

A sensitive molecular probe exhibiting significant change in their photophysical and morphological behavior upon interaction with Fe ion.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India. Electronic address:

An efficient molecular probe 8 has been designed and synthesized. The photophysical, electrochemical and morphological behavior of the probe has been examined in the absence and presence of different ions. The probe 8 at 90 % water fraction in acetonitrile showed aggregation induced emission (AIE).

View Article and Find Full Text PDF

Lattice Light-Sheet Microscopy Allows for Super-Resolution Imaging of Receptors in Leaf Tissue.

Biophys J

December 2024

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

Plant leaf tissues are difficult to image via fluorescent microscopy due to the presence of chlorophyll and other pigments, which provide large background fluorescence. The lattice light-sheet microscopy offers the advantage of using Bessel beams to illuminate a thin focal region of interest for microscopy, allowing for the excitation of fluorescent molecules within this region without surrounding chlorophyll-like objects outside of the region of interest. Here, we apply STORM super-resolution techniques to observe Receptor-Like Kinases in Arabidopsis thaliana leaf cells.

View Article and Find Full Text PDF

Background Early staging of lung carcinoma (CA) is pivotal in planning the treatment. Lymph node metastasis can be detected by imaging and invasive procedures. The 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is an emerging noninvasive imaging modality in detecting nodal metastasis.

View Article and Find Full Text PDF

Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!