This study puts forward a new way to produce montmorillonite immobilized bimetallic nickel-iron nanoparticles by dry in-situ hydrogen reduction method in the non-liquid environment, which effectively inhibits the oxidation of iron and nickel during the synthesis process and improves the reactivity of the material. The degradation of 4-Chlorophenol (4-CP) was investigated to examine the catalytic activity of the material. The morphology and crystal properties of the montmorillonite-templated Fe/Ni bimetallic particles were explored by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and energy dispersive X-ray spectroscopy analysis. Results suggest that Fe and Ni particles were homogeneously dispersed on the montmorillonite. The optimization of Ni content and reduction temperature over the degradation of 4-CP was also studied. The introduction of Ni intensely improved the degradation of 4-CP and reached over 90% when Ni content was 28.5%. The degradation rate increased significantly with the increase of reduction temperature and showed maximum activity at the reduction tempreature of 800 °C. This study offers a new method to fabricate montmorillonite immobilized Fe/Ni bimetallic nanoparticles in the non-liquid environment and the composites exhibited high degradation activity to chlorinated organic compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746765PMC
http://dx.doi.org/10.1038/s41598-019-49349-wDOI Listing

Publication Analysis

Top Keywords

montmorillonite immobilized
12
fe/ni bimetallic
12
immobilized fe/ni
8
dry in-situ
8
in-situ hydrogen
8
hydrogen reduction
8
non-liquid environment
8
electron microscopy
8
reduction temperature
8
degradation 4-cp
8

Similar Publications

Composite materials based on diatomite (DT) with the addition of biochar (BC), dolomite (DL), and bentonite (BN) were developed. The effect of chemical modification on the chemical structure of the resulting composites was investigated, and their influence on heavy metal immobilization and the ecotoxicity of post-flotation sediments was evaluated. It was demonstrated that the chemical modifications resulted in notable alterations to the chemical properties of the composites compared to pure DT and mixtures of DT with BC, DL, and BN.

View Article and Find Full Text PDF

Dimethyl ether (DME) is a versatile molecule, gaining increasing interest as a viable hydrogen and energy storage solution, pivotal for the transitioning from fossil fuels to environmentally friendly and sustainable energy supply. This research explores a novel approach for the direct conversion of CO to DME in a fixed-bed reactor, combining the Cu/ZnO/AlO methanol synthesis catalyst with supported heteropolyacids (HPAs). First, various HPAs, both commercially available and custom-synthesized, were immobilized on Montmorillonite K10.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.

View Article and Find Full Text PDF

The incorporation of photoactive organic dyes into layered inorganic materials enhances their optical and chemical properties, making them ideal for sensing applications. In this study, Bisindolyl methane (BIM)-based neutral probes were integrated with bentonite clay to explore their sensing capabilities. Probe 1 (unoxidized BIM) and Probe 2 (oxidized BIM) generally exhibited quenched luminescence in solution due to intramolecular rotations.

View Article and Find Full Text PDF

Impact of pH on sodium caseinate binding and structural changes on montmorillonite surface.

Int J Biol Macromol

December 2024

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France. Electronic address:

The immobilization of proteins onto clay surfaces has proven beneficial for pharmaceutical and environmental applications. This study examines the adsorption of sodium caseinate (Cas), an amphiphilic protein widely used in pharmaceutical formulations, onto sodium montmorillonite (Mt). Adsorption isotherms and kinetics were examined at two pHs, above and below Cas isoelectric point (IEP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!