Herein, an edible biopolymer amine Modified Gum Acacia (MGA), successfully encumbered with Electron Beam irradiated Polypyrrole Nanospheres (EB-PPy NSs), was investigated for the effective role in L-Tyrosine (Tyr) biosensing application. The morphology of EB-PPy NSs decorated MGA (EB-PPy/MGA) hybrid nanobiocomposite has been studied by Scanning electron microscopy and its affirmed interactions were characterized by X-ray diffraction, Raman, FT-IR spectroscopy, UV-Visible spectroscopy, Thermo Gravimetric Analysis and Vibrating Sample Magnetometer. The hybrid nanobiocomposite manifested diamagnetic behavior with reduced saturation magnetization (M = 1.412 × 10 emu/g) to produce more adhesive surface. Amine chains in EB-PPy NSs and hydroxyl groups of MGA contributed to effective immobilization, thus enabling suitable orientation for Tyr determination. The electrochemical analysis illustrated that the proposed nanobiocomposite based sensor exhibited an excellent electrocatalytic activity toward selective determination of Tyr in the linear range of 0.4 to 600 µM with a lower detection limit of 85 nM, low oxidation potential of 0.72 V and good selectivity. Finally, the reliability of the constructed EB-PPy/MGA for Tyr detection was demonstrated in real samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746781 | PMC |
http://dx.doi.org/10.1038/s41598-019-49735-4 | DOI Listing |
Sci Rep
September 2019
Department of Nanoscience and Technology, Alagappa University, Karaikudi, 630 003, India.
Herein, an edible biopolymer amine Modified Gum Acacia (MGA), successfully encumbered with Electron Beam irradiated Polypyrrole Nanospheres (EB-PPy NSs), was investigated for the effective role in L-Tyrosine (Tyr) biosensing application. The morphology of EB-PPy NSs decorated MGA (EB-PPy/MGA) hybrid nanobiocomposite has been studied by Scanning electron microscopy and its affirmed interactions were characterized by X-ray diffraction, Raman, FT-IR spectroscopy, UV-Visible spectroscopy, Thermo Gravimetric Analysis and Vibrating Sample Magnetometer. The hybrid nanobiocomposite manifested diamagnetic behavior with reduced saturation magnetization (M = 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!