Often wetting is considered from the perspective of a single surface of a rigid substrate and its topographical properties such as roughness or texture. However, many substrates, such as membranes and meshes, have two useful surfaces. Such flexible substrates also offer the potential to be formed into structures with either a double-sided surface (e.g. by joining the ends of a mesh as a tape) or a single-sided surface (e.g. by ends with a half-twist). When a substrate possesses holes, it is also possible to consider how the spaces in the substrate may be connected or disconnected. This combination of flexibility, holes and connectedness can therefore be used to introduce topological concepts, which are distinct from simple topography. Here, we present a method to create a Slippery Liquid-Infused Porous Surface (SLIPS) coating on flexible conformable doubled-sided meshes and for coating complex geometries. By considering the flexibility and connectedness of a mesh with the surface properties of SLIPS, we show it is possible to create double-sided SLIPS materials with high droplet mobility and droplet control on both faces. We also exemplify the importance of flexibility using a mesh-based SLIPS pipe capable of withstanding laminar and turbulent flows for 180 and 90 minutes, respectively. Finally, we discuss how ideas of topology introduced by the SLIPS mesh might be extended to create completely new types of SLIPS systems, such as Mobius strips and auxetic metamaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746700 | PMC |
http://dx.doi.org/10.1038/s41598-019-49887-3 | DOI Listing |
Langmuir
January 2025
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
The results of an investigation of an impact of the structure of recently synthesized bis(trifluoromethylsulfonyl)imide mono- and dicationic ionic liquids on their properties and behavior as lubricants for slippery liquid infused superhydrophobic coatings are presented for a wide temperature range. In this study, a new approach based on monitoring the surface tension of a liquid sessile droplet on top of a coating was exploited for the analysis of the evolution of the coating properties in prolonged contact with the liquid. It was found that the continuous contact with water flow results in slippery property degradation according to two different scenarios.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China.
The slippery liquid-infused porous surfaces (SLIPS) have recently attracted significant interest in marine antifouling and corrosion protection. Nevertheless, the insufficient durability and corrosion resistance of SLIPS considerably affect their application potential. In this work, a preparation strategy for ultradurable slippery organic coating was proposed to combat biofouling and corrosion.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:
The depletion of lubricants in (slippery liquid-infused porous surfaces) SLIPS poses a significant challenge to their long-term functionality. While line-shaped rough structures can mitigate lubricant loss to some extent, they often fail to provide the stability required for sustained performance. In this study, we present a novel porous nanoflower aluminum alloy slippery liquid-infused surface (P-NF-AA SLIPS), which integrates a porous framework with a rough nanoflower structure.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Engineering Department, Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain.
The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
In recent years, slippery liquid-infused porous surfaces (SLIPSs) have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. TC4 titanium alloy, commonly used in hulls and propellers, is prone to biofouling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!