In this study, the simulation of microorganism ability for the production of poly-β-hydroxybutyrate (PHB) from natural gas (as a carbon source) was carried out. Based on the Taguchi algorithm, the optimum situations for PHB production from natural gas in the columnar bubble reactor with 30 cm length and 1.5 cm diameter at a temperature of 32 °C was evaluated. So, the volume ratio of air to methane of 50:50 was calculated. The simulation was carried out by COMSOL software with two-dimensional symmetric mode. Mass transfer, momentum, density-time, and density-place were investigated. The maximum production of biomass concentration reached was 1.63 g/L, which shows a 10% difference in contrast to the number of experimental results. Furthermore, the consequence of inlet gas rate on concentration and gas hold up was investigated Andres the simulation results were confirmed to experimental results with less than 20% error.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783825 | PMC |
http://dx.doi.org/10.3390/bioengineering6030084 | DOI Listing |
The rapid growth, invasiveness, and resistance to treatment of glioblastoma multiforme (GBM) underscore the urgent need for improved diagnostics and therapies. Current surgical practice is limited by challenges with intraoperative imaging, while recurrence monitoring requires expensive magnetic resonance or nuclear imaging scans. Here we introduce 'acoustic tumor paint', an approach to labeling brain tumors for ultrasound imaging, a widely accessible imaging modality.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America.
Matrix population models are essential tools in conservation biology, offering key metrics to guide species management and conservation planning. However, the development of these models is often limited by insufficient life history data, particularly for non-charismatic species. This study addresses this gap by using life history data from FishBase and the FishLife R package, complemented by size-dependent natural mortality estimates, to parameterize age-structured matrix population models applicable to most fish species.
View Article and Find Full Text PDFSci Rep
January 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun, China.
The laminae of varying lithologies are characteristic of shale oil reservoirs, with their pronounced heterogeneity and fluid-solid coupling significantly impacting oil productivity. To this end, this study initially quantified the permeability and mechanical heterogeneity in lamina-developed shale through permeability tests and quasi triaxial mechanical experiments on shale cores from different orientations in the Jiyang Depression. These tests revealed marked brittleness in horizontally oriented cores and elasticity in vertically oriented cores.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Medicine, New Jersey Medical School, Rutgers - The State University of New Jersey;
Fungi infect humans when environmental spores are inhaled into the lungs. The lung is a heterogeneous organ. Conducting airways, including bronchi and bronchioles, branch until terminating in the alveolar airspace where gas exchange occurs.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Programme of Veterinary Technology and Veterinary Nursing, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand.
Ripening karanda fruits are a natural source of phytochemicals, which exhibit various biological properties. The present study aimed to determine the types of phytochemicals, biological properties, and cytotoxic and hemolytic effects of ripening karanda fruits. Two mechanical tools were used to collect the phytochemicals under low temperatures during the extraction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!