An Evaluation of Systematic Versus Strategically-Placed Camera Traps for Monitoring Feral Cats in New Zealand.

Animals (Basel)

Department of Pest Management and Conservation, Lincoln University, PO Box 85084, Lincoln 7674, New Zealand.

Published: September 2019

We deploy camera traps to monitor feral cat () populations at two pastoral sites in Hawke's Bay, North Island, New Zealand. At Site 1, cameras are deployed at pre-determined GPS points on a 500-m grid, and at Site 2, cameras are strategically deployed with a bias towards forest and forest margin habitat where possible. A portion of cameras are also deployed in open farmland habitat and mixed scrub. We then use the abundance-induced heterogeneity Royle-Nichols model to estimate mean animal abundance and detection probabilities for cameras in each habitat type. Model selection suggests that only cat abundance varies by habitat type. Mean cat abundance is highest at forest margin cameras for both deployment methods (3 cats [95% CI 1.9-4.5] Site 1, and 1.7 cats [95% CI 1.2-2.4] Site 2) but not substantially higher than in forest habitats (1.7 cats [95% CI 0.8-3.6] Site 1, and 1.5 cats [95% CI 1.1-2.0] Site 2). Model selection shows detection probabilities do not vary substantially by habitat (although they are also higher for cameras in forest margins and forest habitats) and are similar between sites (8.6% [95% CI 5.4-13.4] Site 1, and 8.3% [5.8-11.9] Site 2). Cat detections by camera traps are higher when placed in forests and forest margins; thus, strategic placement may be preferable when monitoring feral cats in a pastoral landscape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769530PMC
http://dx.doi.org/10.3390/ani9090687DOI Listing

Publication Analysis

Top Keywords

cats [95%
16
camera traps
12
monitoring feral
8
feral cats
8
site
8
site cameras
8
cameras deployed
8
forest margin
8
detection probabilities
8
habitat type
8

Similar Publications

Objective: Enhancing ventilatory effort during pulmonary function testing can help reveal flow limitations not evident in normal tidal breathing. This study aimed to assess the efficacy and tolerability of using a CO2/O2 gas mixture to enhance tidal breathing with a barometric whole-body plethysmography system in both healthy cats and those with feline lower airway disease (FLAD).

Methods: This prospective study included healthy cats and those with FLAD, which underwent pulmonary function testing and were exposed to a 10% CO2/90% O2 gas mixture in a barometric whole-body plethysmography chamber, with CO2 concentrations maintained within the target range of 5% to 10%.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the clinical and radiologic findings in the treatment of live oligotrophic and pseudoarthrosis nonunions in cats using a linear external fixator.

Methods: The study included 10 cats of various breeds, ages, and sexes that had previously undergone osteosynthesis at another clinic but did not achieve successful results. These cats were diagnosed with nonunion based on clinical and radiographic examinations conducted at the Clinic of the Surgery Department, Siirt University Animal Health Practice and Research Hospital between 2022 and 2023.

View Article and Find Full Text PDF

Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019.

View Article and Find Full Text PDF

There has been an increased interest in standardized approaches to coding facial movement in mammals. Such approaches include Facial Action Coding Systems (FACS), where individuals are trained to identify discrete facial muscle movements that combine to create a facial configuration. Some studies have utilized FACS to analyze facial signaling, recording the quantity of morphologically distinct facial signals a species can generate.

View Article and Find Full Text PDF

Local health departments can play a critical role in zoonoses surveillance at the human-domestic animal interface, especially when existing public health services and close relationships with community groups can be leveraged. Investigators at Harris County Veterinary Public Health employed a community-based surveillance tool for identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in dogs and cats in June--December 2021. Diagnosis was made using both RT-qPCR testing of oral and nasal swabs and plaque reduction neutralization testing of serum samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!