AI Article Synopsis

  • Infantile globoid cell leukodystrophy (GLD), or Krabbe disease, is a serious condition caused by a lack of the enzyme galactosylceramidase (GALC), leading to toxic buildup of a glycolipid called psychosine.
  • New research indicates that psychosine is produced from the breakdown of galactosylceramide by the enzyme acid ceramidase (ACDase), not through the expected anabolic process, thus separating GALC deficiency from psychosine buildup.
  • Inhibition of ACDase has been shown to reduce psychosine levels and improve outcomes in animal models, suggesting it could be a promising target for new therapies for Krabbe disease, offering a potentially safer alternative compared to

Article Abstract

Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778236PMC
http://dx.doi.org/10.1073/pnas.1912108116DOI Listing

Publication Analysis

Top Keywords

krabbe disease
12
psychosine accumulation
12
psychosine
11
acid ceramidase
8
psychosine hypothesis
8
galc deficiency
8
acdase activity
8
twi mouse
8
psychosine synthesis
8
acdase
6

Similar Publications

Background: Assessment of health-related quality of life (HRQoL) in patients with cardiovascular disease (CVD) is impaired by limitations of current patient-reported outcome measures (PROMs). We developed the first cardiovascular disease (CVD) specific electronic PROM for which health items were derived by a fully patient-centered method. This paper reports on the measurement of HRQoL in CVD patients by a novel developed electronic patient-centred PROM based on a preference-based measurement model.

View Article and Find Full Text PDF

Ablation of lipocalin-2 reduces neuroinflammation in a mouse model of Krabbe disease.

Sci Rep

December 2024

Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.

Lipocalin-2 (LCN2) is an acute-phase secretory molecule significantly upregulated in various neuroinflammatory and demyelinating conditions. Krabbe disease (KD) is a neurodegenerative lysosomal disorder caused by a galactosylceramidase (GALC) deficiency, accumulating cytotoxic psychosine in nervous systems, and subsequent neuroinflammation. Here, we show that LCN2 is highly overexpressed in GALC-deficient astrocytes.

View Article and Find Full Text PDF

A lipid nanoparticle-based oligodendrocyte-specific mRNA therapy.

Mol Ther Nucleic Acids

December 2024

Department of Therapeutics for Multiple System Atrophy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Article Synopsis
  • The study highlights the challenge of delivering mRNA therapies effectively into oligodendrocytes, a type of brain cell, as traditional viral vectors aren't effective.
  • Researchers utilized LUNAR lipid nanoparticles to achieve high efficiency and specificity in delivering mRNA to these cells, leveraging low-density lipoprotein receptors with the help of apoprotein E.
  • A single dose of LUNAR-human galactosylceramidase mRNA significantly improved the health and survival of twitcher mice, a model for Krabbe disease, showcasing the potential of this method for treating neurological disorders related to oligodendrocytes.
View Article and Find Full Text PDF

Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease.

PLoS One

December 2024

Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.

Article Synopsis
  • - Krabbe disease (Kd) is caused by a deficiency in the enzyme GALC, leading to the accumulation of the lipid galactosylceramide (GalCer), which produces a toxic lipid called psychosine that damages myelinating cells and leads to demyelination.
  • - Research using induced pluripotent stem cells (iPSCs) from Kd patients revealed that Kd myelinating organoids exhibit early myelination defects without affecting other cell types, while the microglia in these organoids show changes in response to GalCer feeding.
  • - The findings suggest that while Kd model organoids don't show classic lysosomal dysfunction, they provide an essential platform for studying the mechanisms behind demyel
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!