A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantifying stochastic uncertainty in detection time of human-caused climate signals. | LitMetric

Quantifying stochastic uncertainty in detection time of human-caused climate signals.

Proc Natl Acad Sci U S A

Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA 94550.

Published: October 2019

Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time [Formula: see text] in individual ensemble members. Distributions of [Formula: see text] are characterized by the median [Formula: see text] and range [Formula: see text], computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling-primarily caused by ozone depletion-yields [Formula: see text] values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas-driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty [Formula: see text] is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within [Formula: see text] ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778254PMC
http://dx.doi.org/10.1073/pnas.1904586116DOI Listing

Publication Analysis

Top Keywords

[formula text]
28
tropospheric warming
16
stochastic uncertainty
8
detection time
8
signal detection
8
warming larger
8
climate sensitivity
8
aerosol forcing
8
[formula
7
text]
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!