Optical deformation of single aerosol particles.

Proc Natl Acad Sci U S A

Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada;

Published: October 2019

Advancements in designing complex models for atmospheric aerosol science and aerosol-cloud interactions rely vitally on accurately measuring the physicochemical properties of microscopic particles. Optical tweezers are a laboratory-based platform that can provide access to such measurements as they are able to isolate individual particles from an ensemble. The surprising ability of a focused beam of light to trap and hold a single particle can be conceptually understood in the ray optics regime using momentum transfer and Newton's second law. The same radiation pressure that results in stable trapping will also exert a deforming optical stress on the surface of the particle. For micron-sized aqueous droplets held in the air, the deformation will be on the order of a few nanometers or less, clearly not observable through optical microscopy. In this study, we utilize cavity-enhanced Raman scattering and a phenomenon known as thermal locking to measure small deformations in optically trapped droplets. With the aid of light-scattering calculations and a model that balances the hydrostatic pressure, surface tension, and optical pressure across the air-droplet interface, we can accurately determine surface tension from our measurements. Our approach is applied to 2 systems of atmospheric interest: aqueous organic and inorganic aerosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778217PMC
http://dx.doi.org/10.1073/pnas.1907687116DOI Listing

Publication Analysis

Top Keywords

surface tension
8
optical
5
optical deformation
4
deformation single
4
single aerosol
4
aerosol particles
4
particles advancements
4
advancements designing
4
designing complex
4
complex models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!