The accurate regulation of phosphorylation at the kinetochore is essential for establishing chromosome bi-orientation. Phosphorylation of kinetochore proteins by the Aurora B kinase destabilizes improper kinetochore-microtubule attachments, whereas the phosphatase PP2A has a counteracting role. Imbalanced phosphoregulation leads to error-prone chromosome segregation and aneuploidy, a hallmark of cancer cells. However, little is known about the molecular events that control the balance of phosphorylation at the kinetochore. Here, we show that localization of SET/TAF1, an oncogene product, to centromeres maintains Aurora B kinase activity by inhibiting PP2A, thereby correcting erroneous kinetochore-microtubule attachment. SET localizes at the inner centromere by interacting directly with shugoshin 2, with SET levels declining at increased distances between kinetochore pairs, leading to establishment of chromosome bi-orientation. Moreover, SET overexpression induces chromosomal instability by disrupting kinetochore-microtubule attachment. Thus, our findings reveal the novel role of SET in fine-tuning the phosphorylation level at the kinetochore by balancing the activities of Aurora B and PP2A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781429PMC
http://dx.doi.org/10.1083/jcb.201811060DOI Listing

Publication Analysis

Top Keywords

aurora kinase
12
phosphorylation kinetochore
12
kinase activity
8
inner centromere
8
chromosome bi-orientation
8
kinetochore-microtubule attachment
8
kinetochore
5
aurora
4
activity regulated
4
regulated set/taf1
4

Similar Publications

Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers.

J Med Chem

January 2025

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.

Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.

View Article and Find Full Text PDF

Objectives: Abdominal wall and intra-abdominal fibromatoses are locally aggressive, nonmetastasizing neoplasms. Surgery has been the mainstay of local control, but new forms of therapy have been developed that may influence the clinical course and morbidity. We studied the clinical features and outcomes of patients with abdominal and intra-abdominal fibromatoses over time.

View Article and Find Full Text PDF

Aims: Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice.

Methods: The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression.

View Article and Find Full Text PDF

Background: Aurora kinase A (AurkA) plays a vital role in mitosis and is therefore critical in tumors development and progression. There are a few studies on AurkA expression in salivary gland tumors. The aim of the present study was to evaluate the expression pattern of AurkA in the most common benign and malignant salivary gland tumors by immunohistochemistry.

View Article and Find Full Text PDF

There is an urgent need to develop new targeted treatment agents for small cell lung cancer (SCLC). Tinengotinib (TT-00420) is a novel, multi-targeted, and spectrally selective small-molecule kinase inhibitor that has shown significant inhibitory effects on certain solid tumors in preclinical studies. However, its role and mechanism of action in SCLC remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!