The present paper describes the synthesis and the binding properties for the serotonergic 5-HT and 5-HT receptors of three new series (A-C) of (benzo)thienopyrimidinone derivatives. All series exhibit a basic moiety at the 2-position of the heterocyclic scaffold such as N,N-dialkylaminoalkylthio chain in series A and phenylpiperazine, benzylpiperazine, or benzylpiperidine alkyl chain in series B and C. Compounds endowed with the best binding properties at 5-HTR belong to the B and C types. In particular, derivatives B2 and C1 (RSC4) exhibit notable affinity for 5-HTR (K = 9.08 and 0.85 nM, respectively) and selectivity over the 5-HTR (254- and 48-fold, respectively). The structure-affinity relationships for these three new classes of 5-HTR ligands are discussed and, in order to rationalize and deeply investigate the observed results, molecular modeling studies were performed. In particular, the binding poses of the synthesized compounds were studied by docking them in the two receptor proteins suitably built by homology modeling. The calculated binding energies resulted in an excellent agreement with the experimental measured K, further validating the quality of the models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2019.111690 | DOI Listing |
Neurosci Lett
January 2025
Institute of Sport Sciences and Physiotherapy, University of Tartu, Estonia.
Objective: Lower platelet monoamine oxidase (MAO) activity has consistently been associated with excessive risk-taking and general psychiatric vulnerability. How this peripheral measure can represent presumably centrally regulated complex behaviours is not clear but platelet MAO activity has been suggested to reflect the capacity of serotonin release in the brain. Secretion of prolactin is in part under serotonergic control and indicates serotonin release capacity.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.
View Article and Find Full Text PDFToxics
December 2024
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
Methamphetamine (METH) abuse disrupts the homeostasis of neurotransmitter (NT) metabolism, contributing to a wide range of neurological and psychological disorders. However, the specific effects of METH on NT metabolism, particularly for the tryptophan (TRP) and tyrosine (TYR) metabolic pathways, remain poorly understood. In this study, serum samples from 78 METH abusers and 79 healthy controls were analyzed using Ultra-High-Performance Liquid Chromatography with Tandem Mass Spectrometry (UHPLC-MS/MS).
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, 34700 Istanbul, Türkiye.
With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep quality; the activity of GABAergic, glutamatergic, and serotonergic receptors; and concentrations of dopamine and serotonin in the brains of mice. The study employed two experimental models using BALB/c mice to examine the impact of pentobarbital-induced sleep and caffeine-induced insomnia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia.
Time perception is a fundamental cognitive function essential for adaptive behavior and shared across species. The neural mechanisms underlying time perception, particularly its neuromodulation, remain debated. In this review, we examined the role of the serotonergic system in time perception (at the scale of seconds and minutes), building a translational bridge between human and non-human animal studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!