Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration.

Med Image Anal

Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.

Published: December 2019

Convolutional neural networks (CNNs) have recently led to significant advances in automatic segmentations of anatomical structures in medical images, and a wide variety of network architectures are now available to the research community. For applications such as segmentation of the prostate in magnetic resonance images (MRI), the results of the PROMISE12 online algorithm evaluation platform have demonstrated differences between the best-performing segmentation algorithms in terms of numerical accuracy using standard metrics such as the Dice score and boundary distance. These small differences in the segmented regions/boundaries outputted by different algorithms may potentially have an unsubstantial impact on the results of downstream image analysis tasks, such as estimating organ volume and multimodal image registration, which inform clinical decisions. This impact has not been previously investigated. In this work, we quantified the accuracy of six different CNNs in segmenting the prostate in 3D patient T2-weighted MRI scans and compared the accuracy of organ volume estimation and MRI-ultrasound (US) registration errors using the prostate segmentations produced by different networks. Networks were trained and tested using a set of 232 patient MRIs with labels provided by experienced clinicians. A statistically significant difference was found among the Dice scores and boundary distances produced by these networks in a non-parametric analysis of variance (p < 0.001 and p < 0.001, respectively), where the following multiple comparison tests revealed that the statistically significant difference in segmentation errors were caused by at least one tested network. Gland volume errors (GVEs) and target registration errors (TREs) were then estimated using the CNN-generated segmentations. Interestingly, there was no statistical difference found in either GVEs or TREs among different networks, (p = 0.34 and p = 0.26, respectively). This result provides a real-world example that these networks with different segmentation performances may potentially provide indistinguishably adequate registration accuracies to assist prostate cancer imaging applications. We conclude by recommending that the differences in the accuracy of downstream image analysis tasks that make use of data output by automatic segmentation methods, such as CNNs, within a clinical pipeline should be taken into account when selecting between different network architectures, in addition to reporting the segmentation accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985677PMC
http://dx.doi.org/10.1016/j.media.2019.101558DOI Listing

Publication Analysis

Top Keywords

segmentation prostate
8
convolutional neural
8
neural networks
8
mri-ultrasound registration
8
organ volume
8
produced networks
8
networks
5
automatic segmentation
4
prostate
4
prostate mri
4

Similar Publications

: Prostate cancer (PCa) is the most frequent neoplasia in the male population. According to the International Society of Urological Pathology (ISUP), PCa can be divided into two major groups, based on their prognosis and treatment options. Multiparametric magnetic resonance imaging (mpMRI) holds a central role in PCa assessment; however, it does not have a one-to-one correspondence with the histopathological grading of tumors.

View Article and Find Full Text PDF

Due to the increasing workload of pathologists, the need for automation to support diagnostic tasks and quantitative biomarker evaluation is becoming more and more apparent. Foundation models have the potential to improve generalizability within and across centers and serve as starting points for data efficient development of specialized yet robust AI models. However, the training of foundation models themselves is usually very expensive in terms of data, computation, and time.

View Article and Find Full Text PDF

Prostate cancer is a significant global health issue due to its high incidence and poor outcomes in metastatic disease. This study aims to develop models predicting overall survival for patients with metastatic biochemically recurrent prostate cancer, potentially helping to identify high-risk patients and enabling more tailored treatment options. A multi-centre cohort of 180 such patients underwent [Ga]Ga-PSMA-11 PET/CT scans, with lesions semi-automatically segmented and radiomic features extracted from lesions.

View Article and Find Full Text PDF

Ultrasound radiomics model based on grayscale transrectal ultrasound-guided biopsy for diagnosing prostate cancer and predicting distant metastasis.

Int Urol Nephrol

January 2025

Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, No. 2 Jiefang Road, Xiling District, Yichang, Hubei, China.

Objective: A prostate ultrasound (US) imaging omics model was established to assess its effectiveness in diagnosing prostate cancer (PCa), predicting Gleason score (GS), and determining the likelihood of distant metastasis.

Methods: US images of patients with prostate pathology confirmed by biopsy or surgery at our hospital were retrospectively analyzed. Regions of interest (ROI) segmentation, feature extraction, feature screening, and the construction and training of the radiomics model were performed.

View Article and Find Full Text PDF

Artificial Intelligence-Powered Training Database for Clinical Thinking: App Development Study.

JMIR Form Res

January 2025

Centre for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.

Background: With the development of artificial intelligence (AI), medicine has entered the era of intelligent medicine, and various aspects, such as medical education and talent cultivation, are also being redefined. The cultivation of clinical thinking abilities poses a formidable challenge even for seasoned clinical educators, as offline training modalities often fall short in bridging the divide between current practice and the desired ideal. Consequently, there arises an imperative need for the expeditious development of a web-based database, tailored to empower physicians in their quest to learn and hone their clinical reasoning skills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!