Glatiramer acetate is indicated for the treatment of patients with relapsing forms of multiple sclerosis (RMS). In 2016, an alternative to the originator product was approved in the EU through the hybrid procedure regulatory pathway. This paper reviews the scientifically rigorous and multifaceted program undertaken to demonstrate the equivalence of this glatiramer acetate follow-on product (GTR) and the reference product Copaxone which resulted in the EU approval of GTR 20 mg/mL and 40 mg/mL. Establishing therapeutic equivalence for non-biological complex drugs is not trivial and requires a complex and multidisciplinary effort. Ultimately, there is not a single test or study that establishes therapeutic equivalence of two heterogeneous products. Instead, it requires a good understanding of the synthesis process together with a full set of data that includes comparative physicochemical testing, nonclinical and studies, and a comparative clinical study to allow for a valid conclusion that two products are therapeutically equivalent. The detailed understanding of glatiramer's synthesis process and its impact on the characteristics of glatiramer, combined with the results of a scientifically rigorous and multifaceted physicochemical and biological characterization program, and the clinical data from the 794-patient Phase III GATE study, demonstrate that GTR and Copaxone are therapeutically equivalent. The data further demonstrate that Synthon's manufacturing process consistently yields drug substance of the same quality as Copaxone and that switching from Copaxone to GTR is safe and well-tolerated.

Download full-text PDF

Source
http://dx.doi.org/10.1691/ph.2019.9515DOI Listing

Publication Analysis

Top Keywords

therapeutically equivalent
12
glatiramer acetate
12
scientifically rigorous
8
rigorous multifaceted
8
therapeutic equivalence
8
synthesis process
8
comparison copaxone
4
copaxone synthon's
4
synthon's therapeutically
4
glatiramer
4

Similar Publications

Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits.

View Article and Find Full Text PDF

Bioequivalence Design With Sampling Distribution Segments.

Stat Med

February 2025

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada.

In bioequivalence design, power analyses dictate how much data must be collected to detect the absence of clinically important effects. Power is computed as a tail probability in the sampling distribution of the pertinent test statistics. When these test statistics cannot be constructed from pivotal quantities, their sampling distributions are approximated via repetitive, time-intensive computer simulation.

View Article and Find Full Text PDF

Recently, there has been a growing demand for plant-based products to treat a range of health conditions. (L.), a member of the Lamiaceae family, is widely known for its versatile therapeutic properties.

View Article and Find Full Text PDF

Acute retinal ischemia, including central retinal artery occlusion (CRAO), is recognized as a stroke equivalent by the American Heart Association/American Stroke Association (AHA/ASA), necessitating immediate multidisciplinary evaluation and management. However, referral patterns among ophthalmologists remain inconsistent, and evidence-based therapeutic interventions to improve visual outcomes are currently lacking. CRAO is associated with a significantly elevated risk of subsequent acute ischemic stroke (AIS), particularly within the first week following diagnosis, yet the role of intravenous thrombolysis (IVT) in this setting remains controversial.

View Article and Find Full Text PDF

Acidic Microenvironment Enhances Cisplatin Resistance in Bladder Cancer via Bcl-2 and XIAP.

Curr Issues Mol Biol

January 2025

Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.

Cisplatin (CDDP) remains a key drug for patients with advanced bladder cancer (BC), despite the emergence of new therapeutic agents; thus, the identification of factors contributing to CDDP treatment resistance is crucial. As acidity of the tumor microenvironment has been reported to be associated with treatment resistance and poor prognosis across various cancer types, our objectives in this study were to investigate the effects of an acidic environment on BC cells and elucidate the mechanisms behind CDDP resistance. Our findings show that BC cells cultured under acidic conditions developed cisplatin resistance as acidity increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!