Enhanced ozone concentrations at land-water interfaces create National Ambient Air Quality Standard (NAAQS) compliance issues across the United States. The northern Chesapeake Bay experiences higher ozone at sites adjacent to the Bay, creating ozone compliance concerns for the state of Maryland. Accordingly, the Maryland Department of the Environment sited an ozone monitor at Hart-Miller Island (HMI) within the northern Chesapeake Bay (NCB) and gathered a continuous ozone and meteorological record over 278 days within the 2016 and 2017 ozone seasons. The representative water site was the highest ozone monitor in the state 28% of all days and 75% when any ozone monitor in the state experienced ozone above the 2015 ozone NAAQS (70 ppbv), known as an exceedance day. In total, 24 exceedance days were observed at HMI. Numerical ozone predictions produced by an operational version of the Community Multi-scale Air Quality (CMAQ) model forecast 52 such days with a high bias of 15.5% in daily maximum ozone concentration during the same period. Trajectory modeling indicated over 70% of exceedance days possessed northwesterly transport over the Baltimore area, with HYSPLIT trajectories descending at least 500 m in greater than 80% of cases toward the NCB surface. These trajectories possessed a button-hook pattern during descent to create southerly surface winds at HMI that may impact coastal sites, creating ozone events at Maryland monitors such as Edgewood. Consequently, the NCB was influenced by the residual layer and from both regional long-range transport and locally sourced ozone precursors. Changes in local meteorology and emissions had a significant impact on over-water ozone concentrations and forecasts. Results of the multi-season ozone pilot study over the Chesapeake Bay provided a conceptual model of high ozone development over water downwind of a large urban center and guidance for future study of the NCB area. : Multi-seasonal observations of surface ozone and meteorology over the water of the northern Chesapeake Bay showed specific conditions leading to degraded air quality. The novel data set collected offers a deeper understanding of over-water ozone magnitude, occurrence, and transport across the land-water interface and comparison to air quality models not before possible.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2019.1668497DOI Listing

Publication Analysis

Top Keywords

chesapeake bay
20
ozone
19
air quality
16
northern chesapeake
12
ozone monitor
12
land-water interface
8
hart-miller island
8
ozone concentrations
8
creating ozone
8
monitor state
8

Similar Publications

Terrestrial friction-reducing properties of mucus and scale anisotropy in the amphibious Northern Snakehead (Channa argus).

Integr Comp Biol

January 2025

Department of Biology, Henson School of Science and Technology, Salisbury University, Salisbury, MD 21801, USA.

The mucus coating around a fish's body is essential to its survival. It contains antimicrobial properties, aids in drag reduction, and protects against physical damage. It is versatile in the aquatic environment but little is known about the role of mucus in amphibious fishes.

View Article and Find Full Text PDF

Climate change brings intense hurricanes and storm surges to the US Atlantic coast. These disruptive meteorological events, combined with sea level rise (SLR), inundate coastal areas and adversely impact infrastructure and environmental assets. Thus, storm surge projection and associated risk quantification are needed in coastal adaptation planning and emergency management.

View Article and Find Full Text PDF

Coastal ecosystems are degraded worldwide and oyster reefs are among the most threatened coastal habitats. Oysters are a critical ecosystem engineer and valuable fishery species, thus effective management strategies must balance tradeoffs between protecting reef ecosystems and continued human use. Management practices for oysters commonly incorporate shell replenishment (provisioning hard substrates to increase reef relief) and spatial management (rotational harvest areas or sanctuaries); however, the impact of these practices on reef dynamics and fisheries outcomes are poorly understood, particularly on harvested reefs.

View Article and Find Full Text PDF

This study assessed effectiveness of regulations reducing environmental butyltin concentrations in Southern Chesapeake Bay over the 1999-2021 period. Water column monitoring of the Elizabeth River from 1999 to 2006 demonstrated decreasing TBT from 2003 to 2006 (average >1 ng/L at most stations) to <1 ng L by 2019 but with higher concentrations of degradation products DBT and MBT. TBT degrades to DBT and MBT within sediments, and releases degradation products over time.

View Article and Find Full Text PDF

Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!