Differently functionalized boron nitride nanosheets (BNNSs) [hydroxyl (OH_BNNSs), amine (NH_BNNSs), and poly(ethylene glycol) (PEG) (PEG_BNNSs)] were synthesized, and their effects on the structure and thermal properties of poly(l-lactic acid) (PLLA) along with those of the pristine BNNSs were studied. Highly dispersed nanocomposites were prepared using PLLA and 0.5 wt % of pristine/functionalized BNNSs via a solvent blending method. Homogeneous dispersion of BNNSs in the polymer matrix was confirmed using X-ray diffraction and scanning electron microscopy. Pristine BNNSs and OH_BNNSs accelerated the crystallization of PLLA as effective nucleating agents and favored the formation of the α form in melt-crystallized samples. On the other hand, NH_BNNSs and PEG_BNNSs incorporated samples result in the moderate crystallization rate of PLLA and lead to the formation of a mixture of α and α' forms similar to the PLLA. It is also found that thermal stability and thermal conductivity of PLLA nanocomposites significantly depend on the type of functionalization of BNNSs. At 0.5 wt % loading, the thermal conductivity enhancement is maximum for PEG_BNNSs incorporated PLLA (∼62%), and that is only 9% for pristine BNNSs incorporated PLLA. The thermal stability of PLLA nanocomposites was significantly improved by 32-41 °C depending on the type of functionalized BNNSs compared to PLLA. It is proposed that the strong interaction between functionalized BNNSs and PLLA matrix is responsible for the improved thermal management properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b07743DOI Listing

Publication Analysis

Top Keywords

pristine bnnss
12
plla
11
bnnss
9
boron nitride
8
properties polyl-lactic
8
polyl-lactic acid
8
peg_bnnss incorporated
8
plla thermal
8
thermal stability
8
thermal conductivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!