A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spherical-Shape Assumption for Protein-Aptamer Complexes Facilitates Prediction of Their Electrophoretic Mobility. | LitMetric

Spherical-Shape Assumption for Protein-Aptamer Complexes Facilitates Prediction of Their Electrophoretic Mobility.

Anal Chem

Department of Chemistry and Centre for Research on Biomolecular Interactions , York University, Toronto , Ontario M3J 1P3 , Canada.

Published: October 2019

DNA aptamers are single-strand DNA (ssDNA) capable of selectively and tightly binding a target molecule. Capillary electrophoresis-based selection of aptamers for protein targets requires the knowledge of electrophoretic mobilities of protein-aptamer complexes, while measuring these mobilities requires having the aptamers. Here, we report on breaking this vicious circle. We introduce a mathematical model that allows prediction of protein-aptamer complex mobility, while requiring only three easy-to-determine input parameters: the number of nucleotides in the aptamer, electrophoretic mobility of -nucleotide-long ssDNA, and a sum molecular weight of the protein-aptamer complex. The model was derived upon simplifying assumptions of a spherical shape of the protein-aptamer complex. According to this model, the protein-aptamer complex mobility is a linear function of a combination of the three input parameters with empirically determined line's intercept and slope. The intercept and slope were determined using experimental data for seven complexes. The model was then cross-validated with the leave-one-out approach revealing only 2% residual standard deviations for both the slope and the intercept. Such a precise determination of these constants allowed accurate mobility prediction for the excluded complexes with only a 3% maximum deviation from the experimentally determined mobilities. The model was tested by applying it to three protein-aptamer complexes that were not a part of the training/cross-validation set; deviations of the predicted mobilities from the experimentally determined ones were within 5% of the latter. To complete this study, the model was fine-tuned using the 10 complexes. Our results strongly suggest the validity of the spherical-shape assumption for the protein-aptamer complexes when considering complex mobility. The developed model will make it possible to rationally design capillary electrophoresis-based selection of DNA aptamers for protein targets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02019DOI Listing

Publication Analysis

Top Keywords

protein-aptamer complexes
16
protein-aptamer complex
16
complex mobility
12
spherical-shape assumption
8
protein-aptamer
8
assumption protein-aptamer
8
electrophoretic mobility
8
dna aptamers
8
capillary electrophoresis-based
8
electrophoresis-based selection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!