Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses toward implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances in the utilization of liquid marbles (LMs, microliter quantities of fluid coated in hydrophobic powder) for the creation of unconventional computing devices, we describe the development of LMs with neuromorphic properties through the use of copper coatings and 1.0 mg mL carbon nanotube (CNT)-containing fluid cores. Experimentation was performed through sandwiching the LMs between two cup-style electrodes and stimulating them with repeated dc pulses at 3.0 V. Our results demonstrate that "entrainment" of CNT-filled copper LMs via periodic pulses can cause their electrical resistance to rapidly switch between high to low resistance profiles upon inverting the polarity of stimulation: the reduction in resistance between high and low profiles was approximately 88% after two rounds of entrainment. This effect was found to be reversible through reversion to the original stimulus polarity and was strengthened by repeated experimentation, as evidenced by a mean reduction in time to switching onset of 43%. These effects were not replicated in nanotube solutions not bound inside LMs. Our electrical characterization also reveals that nanotube-filled LMs exhibit pinched loop hysteresis IV profiles consistent with the description of memristors. We conclude by discussing the applications of this technology to the development of unconventional computing devices and the study of emergent characteristics in biological neural tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007261PMC
http://dx.doi.org/10.1021/acs.langmuir.9b02552DOI Listing

Publication Analysis

Top Keywords

computing devices
12
liquid marbles
8
carbon nanotube
8
unconventional computing
8
high low
8
lms
6
neuromorphic liquid
4
marbles aqueous
4
aqueous carbon
4
nanotube cores
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Associations between bone material strength index and FRAX scores.

J Bone Miner Metab

January 2025

Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.

Introduction: Impact microindentation (IMI) measures bone material strength index (BMSi) in vivo. However, its ability to predict fractures is still uncertain. This study aimed to determine the association between BMSi and 10 year fracture probability, as calculated by the FRAX algorithm.

View Article and Find Full Text PDF

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

Background: It is high time we acknowledged that the IT industry will determine our destiny given its rapid development. The demand to use smartphones and other forms of technology into healthcare is growing in tandem with the population. A great deal has been accomplished because of developments in computer science.

View Article and Find Full Text PDF

Background: The continuous development in digital prosthodontics allowed the customization of attachments and retentive inserts which offers an easy and cheap solution for regular maintenance of locator overdentures during daily practice. The present study compared the change in retention values of the fully digitally manufactured custom-made locator attachment retentive insert with the ready-made ones after insertion, removal, and masticatory cycles.

Methods: A complete denture was constructed over a mandibular edentulous epoxy model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!