Voltage control of the magnetic properties of oxide thin films is highly appealing to enhance energy efficiency in miniaturized spintronic and magnetoelectric devices. Herein, magnetoelectric effects in electrolyte-gated nanoporous iron oxide films are investigated. Highly porous films were prepared by the evaporation-induced self-assembly of sol-gel precursors with a sacrificial block-copolymer template. For comparison, films with less porosity but analogous crystallographic structure were also prepared using an identical procedure except without the polymer template. The films were found to be 70-85 nm in thickness as measured by scanning electron microscopy and primarily hematite as determined by Raman spectroscopy. The templated (highly porous) films showed a very large magnetoelectric response with a maximum increase in magnetic moment at saturation of a factor of 13 and a noticeable (2-fold) increase of coercivity (after applying -50 V). The nontemplated films also exhibited a pronounced increase of magnetic moment at saturation of a factor of 4, although the coercivity remained unaffected over the same voltage range. Magnetoelectric effects in these latter films were found to be fully reversible in the voltage window ±10 V. The observed changes in magnetic properties are concluded to be magneto-ionically driven with oxygen ion exchange between the iron oxide and the liquid electrolyte, as evidenced from Raman and X-ray photoelectron spectroscopy experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b13483 | DOI Listing |
Sci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Biotechnology, University of Calicut, Kerala Malappuram, 673635 India.
Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.
View Article and Find Full Text PDFSci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!