Economic evaluation of improvements in a waste-to-energy combined heat and power plant.

Waste Manag

Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden. Electronic address:

Published: December 2019

Improving the efficiency of waste-to-energy combined heat and power plants increases their production of both electricity and heat. Economic evaluation of such improvements enables adequate decisions to be made between the various alternatives with respect to economic viability of the plant. In this study, the cost and profitability of different modifications to improve efficiency in a waste-to-energy plant are considered: these include the re-arrangement of air heaters, the introduction of a reheater, flue gas condensation (FGC) and an integrated gasification-combustion process. The base case and the modifications are evaluated and compared when operating either as a combined heat and power plant or as a power plant. Modelling, simulation and cost estimations were performed with the Aspen Plus software. Although the integrated gasification-combustion technology with FGC has the highest exergy efficiency, its higher capital cost is greater than all of the other alternatives. Modification 6, which involves both re-arrangement and changing the air heating medium has the lowest capital cost with respect to enhancing exergy efficiency. Modifications 1 and 7, involving FGC, are the best alternatives for the capital cost per total unit of revenue generated. These modifications not only provides the highest heat production but also the highest net present value (NPV). The base case and the modifications investigated all have positive NPV, indicating that a waste-to-energy combined heat and power plant is an attractive investment. However, an increase of about 122% in the gate fees would be required for a system with only electricity production to be profitable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.09.008DOI Listing

Publication Analysis

Top Keywords

combined heat
16
heat power
16
power plant
16
waste-to-energy combined
12
capital cost
12
economic evaluation
8
evaluation improvements
8
efficiency waste-to-energy
8
integrated gasification-combustion
8
base case
8

Similar Publications

Introduction: Thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UTs) are a recently defined group of aggressive cancers in which the effectiveness of standard treatments for lung cancer is unknown.

Methods: We collected clinical, pathologic, and demographic variables from five institutions for patients whose tumors met criteria for SMARCA4-UTs (undifferentiated phenotype and loss of SMARCA4 (BRG1) by immunohistochemistry).

Results: We identified 92 patients with SMARCA4-UTs; 58 (63%) had stage IV disease at diagnosis and 16 (17%) developed recurrent or metastatic disease after initial diagnosis.

View Article and Find Full Text PDF

Objective: Chronic pain strongly affects the quality of life of patients with liver cancer pain. Safe and effective management of cancer-related pain is a worldwide challenge. Traditional Chinese medicine (TCM) has rich clinical experience in the treatment of cancer pain.

View Article and Find Full Text PDF

Unlabelled: This study investigates the optimization of bioactive components in thermosonicated black carrot juice using response surface methodology (RSM) and gradient boosting (GB) modeling techniques. Thermosonication, a combination of ultrasound and heat, was applied to enhance the nutritional quality of black carrot juice, which is rich in anthocyanins, phenolic compounds, and antioxidants. The study examined the effects of temperature, processing time, and ultrasonic amplitude on total carotenoid content (TCC), total anthocyanin content (TAC), ferric reducing antioxidant power (FRAP), and total phenolic content.

View Article and Find Full Text PDF

Superfast nanodroplet propulsion in 2D nanochannels tuned by strain gradients.

Nanoscale

January 2025

Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, China.

Directional transport of droplets is crucial for industrial applications and chemical engineering processes, with significant potential demonstrated in water harvesting, microfluidics, and heat transfer. In this work, we present a novel approach to induce self-driving behavior in nanodroplets within a two-dimensional (2D) nanochannel using a strain gradient, as demonstrated through molecular dynamics simulations. Our findings reveal that a small strain gradient imposed along a nanochannel constructed by parallel surfaces can induce water transport at ultrafast velocities (O(10 m s)), far exceeding macroscale predictions.

View Article and Find Full Text PDF

Introduction Chronic stress is a major burden in our society and increases the risk for various somatic and mental diseases, in part via promoting chronic low-grade inflammation. Interestingly, the vulnerability for chronic stress during adulthood varies widely among individuals, with some being more resilient than others. For instance, women, relative to men, are at higher risk for developing typical stress-related diseases, including depression and post-traumatic stress disorder (PTSD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!