Dynamics of proteolysis, protease activity and bacterial community of Neolamarckia cadamba leaves silage and the effects of formic acid and Lactobacillus farciminis.

Bioresour Technol

Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China. Electronic address:

Published: December 2019

To investigate the reason for well preservation of protein in Neolamarckia cadamba leaves (NCL) during ensiling, fresh NCL were ensiled with or without addition of 2.0 mL/kg formic acid (FA) or 1.0 × 10CFU/kg Lactobacillus farciminis (LF), and the dynamics of protease activity and microbial community were analyzed. Nonprotein-N, free amino acid, ammonia-N, the activities of carboxypeptidase and aminopeptidase, and bacterial diversity were low during NCL ensiling. Exiguobacterium dominated in NCL silage and its relative abundance increased while Enterobacter abundance decreased during ensiling. FA lowered (P < 0.05) pH and coliform bacteria number, while LF increased (P < 0.05) lactic acid bacteria number, lactic acid content and Lactobacillus abundance at the early stage of fermentation. In summary, protein in NCL can be well preserved during ensiling likely due to its low protease and bacterial activity, and FA and LF improve the quality of NCL silage in different ways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.122127DOI Listing

Publication Analysis

Top Keywords

protease activity
8
neolamarckia cadamba
8
cadamba leaves
8
formic acid
8
lactobacillus farciminis
8
ncl ensiling
8
dynamics proteolysis
4
proteolysis protease
4
activity bacterial
4
bacterial community
4

Similar Publications

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation.

Front Biosci (Landmark Ed)

January 2025

Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.

In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!