Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures.

Chem Phys Lipids

Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation. Electronic address:

Published: January 2020

Low-temperature molecular mobility and packing in biological tissues are important for their survival upon cryopreservation. Electron paramagnetic resonance (EPR) in its pulsed version of electron spin echo (ESE) allows studying stochastic librations of spin-labeled molecules, the type of motion which dominates at low temperatures. These librations are characterized by the parameter <α>τ where <α> is the mean squared angular amplitude and τ is the correlation time for the motion. This parameter is known to be larger for higher temperature and for looser intermolecular structure. In this work, ESE data for the bilayers comprised of doubly-unsaturated DOPC (dioleoyl-glycero-phosphocholine) lipids and mono-unsaturated POPC (palmitoyl-oleoyl-glycero-phosphocholine) lipids with spin-labeled stearic acids added were obtained in the temperature range between 80 and 210 K; the results were compared also with the previously obtained data for fully-saturated DPPC (dipalmitoyl-glycero-phosphocholine) lipid bilayers [J. Phys. Chem. B2014, 118, 12,478-12,485; Appl. Magn. Reson. 2018, 49, 1369-1383]. It turned out that for DOPC bilayers the <α>τ values are of intermediate magnitude between those for POPC and DPPC bilayers, which implies an intermediate density of lipid packing. A possible explanation of this result could be rearrangement at cryogenic temperatures of the DOPC lipid tails, with their terminal segments folding cooperatively. This interpretation is also in agreement with the known thermodynamic properties of gel-fluid transition for DOPC bilayer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2019.104817DOI Listing

Publication Analysis

Top Keywords

mobility packing
8
dopc bilayers
8
cryogenic temperatures
8
dopc
5
bilayers
5
lipid
4
lipid chain
4
chain mobility
4
packing dopc
4
bilayers cryogenic
4

Similar Publications

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

We synthesized n-type polymers poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)] and poly{[N,N'-bis(3-(4-cardanol)propyl)-naphthalene-1,4,5,8-tetracarboxylic diimide]-alt-[5,5'-bis(2-thienyl)-2,2'-bithiophene]} [P(NDICL-T2)] with cardanol-based side chains via Stille coupling to enhance electron mobility. Replacing the 2-octyldodecyl side chain with cardanol in P(NDICL-T2) improved electron mobility due to increased chain flexibility and ordered packing. Lower glass transition temperature (), red-shifted UV-vis absorption, results from crystalline structure analysis, indicating tighter lamellar spacing and enhanced molecular ordering, and smoother surface morphology confirmed the enhanced intermolecular interactions and uniform film formation.

View Article and Find Full Text PDF

Understanding how to tune the properties of electroactive materials is a key parameter for their applications in energy storage systems. This work presents a comprehensive study in tailoring polyaniline (PANI) suspensions by acid-assisted polymerization method and their subsequent deposition on boron-doped diamond (BDD) supports with low/high B concentrations. The porous or densely packed morphology of PANI is successfully controlled by varying the monomer-to-initiator ratio.

View Article and Find Full Text PDF

BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China.

The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BCN acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.

View Article and Find Full Text PDF

Dynamic properties of isotropic DMPC/DHPC bicelles: Insights from solution NMR and MD simulations.

Biochem Biophys Res Commun

January 2025

Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13, W8, Sapporo, 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, N8, W5, Sapporo, 060-0810, Japan. Electronic address:

Bicelles, an artificial disk-shaped lipid bilayer, are commonly used for the structural and functional characterization of membrane-bound proteins in an environment similar to that in intracellular membranes. Because the dynamics of the lipids that constitute bicelles exert a significant impact on the structure and function of the inserted proteins, we investigated the mobility of lipid molecules in bicelles composed of DMPC (14:0 PC) and DHPC (06:0 PC) using solution NMR and MD calculations. C R relaxation experiments for the acyl groups demonstrated that increasing bicelle sizes limit the rotational diffusion of acyl chain H-C bonds in DMPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!