Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cancer stem cells (CSCs) are a subpopulation of chemoresistant cells that play a critical role in disease recurrence following chemotherapy. It has been reported that microRNA-133b (miR-133b) acts as a tumor suppressor in colorectal cancer (CRC). However, whether miR-133b is associated with CRC stemness and chemoresistance is not clear. In this study, we report that miR-133b is downregulated in colorectal spheroids, which are enriched with CSCs and display stem cell-like characteristics, including upreulation of CSCs surface markers and elevated chemoresistance. Additionally, miR-133b overexpression reduces CRC stemness and overrides chemoresistance to 5-Fluorouracil (5-FU) and oxaliplatin (OXP), indicating a negative role of miR-133b in regulating CRC stemness and chemoresistance. Moreover, miR-133b directly targets and suppresses the expression of disruptor of telomeric silencing 1-like (DOT1L), an exclusive H3K79 methyltransferase. Furthermore, miR-133b overexpression suppresses DOT1L-mediated H3K79me2 modification of stem cell genes, which is consistent with their downregulated transcription. More importantly, DOT1L restoration abrogates the suppressive effects of miR-133b on CRC stemness and chemoresistance, hence demonstrating that miR-133b regulates CRC stemness and chemoresistance through targeting DOT1L. Overall, these results imply that miR-133b might represent a novel therapeutic target in interfering CRC stemness and chemoresistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2019.111597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!