Globally, crustaceans represent one of the most taxonomically diverse and economically important invertebrate group. Notwithstanding, the diversity within this group is poorly known because most crustaceans are often associated with varied habits, forms, sizes and habitats; making species identification by conventional methods extremely challenging. In addition, progress towards understanding the diversity within this group especially in southern Africa has been severely hampered by the declining number of trained taxonomists, the presence of invasive alien species, over exploitation, etc. However, the advent of molecular techniques such as "DNA barcoding and Metabarcoding" can accelerate species identification and the discovery of new species. To contribute to the growing body of knowledge on crustacean diversity, we collected data from five southern African countries and used a DNA barcoding approach to build the first DNA barcode reference library for southern African crustaceans. We tested the reliability of this DNA barcode reference library to facilitate species identification using two approaches. We recovered high efficacy of specimen identification/discrimination; supported by both barcode gap and tree-base species identification methods. In addition, we identified alien invasive species and specimens with 'no ID" in our DNA barcode reference library. The later; highlighting specimens requiring (i) further investigation and/or (ii) the potential presence of cryptic diversity or (iii) misidentifications. This unique data set although with some sampling gaps presents many opportunities for exploring the effect and extent of invasive alien species, the role of the pet trade as a pathway for crustacean species introduction into novel environments, sea food authentication, phylogenetic relationships within the larger crustacean groupings and the discovery of new species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746381 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222047 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!