AI Article Synopsis

Article Abstract

Introduction: Recently, it has been speculated that protein supplementation may further augment the adaptations to chronic endurance exercise training. We assessed the effect of protein supplementation during chronic endurance exercise training on whole-body oxidative capacity (V˙O2max) and endurance exercise performance.

Methods: In this double-blind, randomized, parallel placebo-controlled trial, 60 recreationally active males (age, 27 ± 6 yr; body mass index, 23.8 ± 2.6 kg·m; V˙O2max, 47 ± 6 mL·min·kg) were subjected to 12 wk of triweekly endurance exercise training. After each session and each night before sleep, participants ingested either a protein supplement (PRO; 28.7 g casein protein) or an isoenergetic carbohydrate placebo (PLA). Before and after the 12 wk of training, V˙O2max and endurance exercise performance (~10-km time trial) were assessed on a cycle ergometer. Muscular endurance (total workload achieved during 30 reciprocal isokinetic contractions) was assessed by isokinetic dynamometry and body composition by dual-energy x-ray absorptiometry. Mixed-model ANOVA was applied to assess whether training adaptations differed between groups.

Results: Endurance exercise training induced an 11% ± 6% increase in V˙O2max (time effect, P < 0.0001), with no differences between groups (PRO, 48 ± 6 to 53 ± 7 mL·min·kg; PLA, 46 ± 5 to 51 ± 6 mL·min·kg; time-treatment interaction, P = 0.50). Time to complete the time trial was reduced by 14% ± 7% (time effect, P < 0.0001), with no differences between groups (time-treatment interaction, P = 0.15). Muscular endurance increased by 6% ± 7% (time effect, P < 0.0001), with no differences between groups (time-treatment interaction, P = 0.84). Leg lean mass showed an increase after training (P < 0.0001), which tended to be greater in PRO compared with PLA (0.5 ± 0.7 vs 0.2 ± 0.6 kg, respectively; time-treatment interaction, P = 0.073).

Conclusion: Protein supplementation after exercise and before sleep does not further augment the gains in whole-body oxidative capacity and endurance exercise performance after chronic endurance exercise training in recreationally active, healthy young males.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798744PMC
http://dx.doi.org/10.1249/MSS.0000000000002028DOI Listing

Publication Analysis

Top Keywords

endurance exercise
36
exercise training
24
protein supplementation
16
time-treatment interaction
16
chronic endurance
12
time 00001
12
00001 differences
12
differences groups
12
endurance
11
exercise
10

Similar Publications

Previous studies in sports science suggested that regular exercise has a positive impact on human health. However, the effects of endurance sports and their underlying mechanisms are still not completely understood. One of the main debates regards the modulation of immune dynamics in high-intensity exercise.

View Article and Find Full Text PDF

Background: Exercise can attenuate the deleterious combined effects of cancer treatment and aging among older adults with cancer, yet exercise participation is low. Telehealth exercise may improve exercise engagement by decreasing time and transportation barriers; however, the utility of telehealth exercise among older adults with cancer is not well established.

Objective: We aimed to evaluate the preliminary effectiveness of a one-on-one, supervised telehealth exercise program on physical function, muscular endurance, balance, and flexibility among older adults with cancer.

View Article and Find Full Text PDF

Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).

View Article and Find Full Text PDF

Influence of puberty on high intensity exercise induced skeletal muscle damage and inflammatory response in sedentary boys.

Sports Med Health Sci

March 2025

Sports and Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences and Technology, 92 A.P.C. Road, Kolkata, 700009, India.

The present investigation examined the influence of age and pubertal transition on magnitude of muscle damage and inflammatory response following high intensity incremental treadmill running till volitional exhaustion in sixty-four sedentary prepubertal ( ​= ​32) and postpubertal ( ​= ​32) boys who were randomly recruited in the study. Muscle damage and inflammatory markers like creatine kinase (CK), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotranferase (AST), C-Reactive Protein (CRP) and Interleukin-6 (IL-6) were estimated before and after exercise. Serum CK, LDH, AST, ALT, CRP and IL-6 levels significantly increased after exercise in both the groups in comparison to respective pre-exercise values.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!